1,744
Views
0
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Philosophies of bamboo structural design and key parameters for developing the philosophies

ORCID Icon, , &
Article: 2122155 | Received 04 Nov 2021, Accepted 03 Sep 2022, Published online: 12 Sep 2022

References

  • Amede, E. A., Hailemariama, E. K., Hailemariam, L. M., & Nuramo, D. A. (2021). a review of codes and standards for bamboo structural design. In Advances in Materials Science and Engineering (Hindawi) (pp. 2021).
  • Amede, E., Hailemariam, E., Hailemariam, L., Nuramo, D., & Jones, I. P. (2022). Identification of factors on the possibility of bamboo as a scaffolding and a formwork material in Ethiopia. Cogent Engineering, 9(1), 2051692. https://doi.org/10.1080/23311916.2022.2051692
  • American Forest and Paper Association. (2001). ANSI/NfoPA NDS-1991 national design specification for wood construction and supplement. AFPA.
  • Anwar, N., & Najam, F. A. (2017). Structures and Structural Design. In Structural Cross Sections. Butterworth-Heinemann. doi:10.1016/B978-0-12-804443-8.00001-4.
  • Arya, C. (2009). Introduction to Structural Design. In Design of structural elements: Concrete, steelwork, masonry and timber designs to British standards and Eurocodes 3rd . CRC Press 9780429181801 https://doi.org/10.1201/b18121 .
  • Borgström, E., Karlsson, R. (2016). Design of timber structures: Structural aspects of timber construction. Volume 1. Swedish Wood .
  • BS5268. (2007). Structural use of timber. Part 2: Code of practice for permissible stress design, materials and workmanship. The British Standards Institution.
  • Canadian Standards Association. (2009). Canadian softwood plywood.
  • Chung, K. F., & Yu, W. K. (2002). Mechanical properties of structural bamboo for bamboo scaffoldings. Engineering Structures, 24(4), 429–19. https://doi.org/10.1016/S0141-0296(01)00110-9
  • Correal, F. F. (2020). Bamboo design and construction. In Nonconventional and vernacular construction materials. characterisation, properties and applications (Second ed., pp. 521–558). Publishing Series in Civil and Structural Engineering,Elsevier Ltd.
  • Crews, K., Trujillo, D., Lopez, L., & Correal, J. (2016). 1 ed, Timber, bamboo and paper Harries, KA., Sharma, B. In Nonconventional and vernacular construction materials. characterisation, properties and applications (pp. 333–408). Woodhead Publishing Series in Civil and Structural Engineering: Number 58,Elsevier Ltd.
  • Dashti, F., Dhakal, R. P., & Pampanin, S. (2017). Numerical modeling of rectangular reinforced concrete structural walls. Journal of Structural Engineering, 143(6), 04017031. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001729
  • Dixon, P. G., & Gibson, L. J. (2014). The structure and mechanics of Moso bamboo material. Journal of Royal Society Interface, 11(99), 20140321. https://doi.org/10.1098/rsif.2014.0321
  • Ellingwood, B. R. (1994). Probability-based codified design: Past accomplishments and future challenges. Structural Safety, 13(3), 159–176. https://doi.org/10.1016/0167-4730(94)90024-8
  • Eurocode 5 2004. (2004). Design of timber structures, Part 1.1 General rules and rules for buildings (European Union).
  • Fagerlund, G. (1985). Essential data for service life prediction (pp. 113–138). Springer.
  • Gatóo, A., Sharma, B., Bock, M., Mulligan, H., & Ramage, M. H. Sustainable structures: Bamboo standards and building codes. (2014). Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 167(5), 189–196. October. https://doi.org/10.1680/ensu.14.00009
  • Ghazi, A. A., & Shabbir, F. (2018). Displacement based design optimization of steel moment frames. Mehran University Research Journal of Engineering and Technology, 37(3), 571–580. https://doi.org/10.22581/muet1982.1803.11
  • Gupta, R., & Gupta, R. (2014). Principles of Structural Design: Wood Steel and Concrete (Second ed.). CRC Press.
  • Hailemariam, E., Hailemariam, L., Amede, E., & Nuramo, D. (2022). Identification of barriers, benefits and opportunities of using bamboo materials for structural purposes. Engineering. Construction and Architectural Management, ahead-of-print. https://doi.org/10.1108/ECAM-11-2021-0996
  • Haldar, A., & Mehrabian, A. (2008). Structural engineering in the new millennium: Opportunities and challenges. Structural Survey, 26(4), 279–301. https://doi.org/10.1108/02630800810906548
  • Harries, K. A., Ben-Alon, L., & Sharma, B. (2020). Codes and standards development for nonconventional and vernacular materials. In Nonconventional and Vernacular Construction Materials (pp. 81–100). Woodhead Publishing. https://doi.org/10.1108/ECAM-11-2021-0996
  • Harries, K. A., & Sharma, B. (2019). Nonconventional and vernacular construction materials: Characterisation, properties and applications. Woodhead Publishing.
  • Huang, Z. (2021). Resource-driven sustainable bamboo construction in Asia-Pacific Bamboo Areas. Springer Nature.
  • Janssen, J. J. (2005). International standards for bamboo as a structural material. Structural Engineering International, 15(1), 48. https://doi.org/10.2749/101686605777963288
  • Kaminski, S., Lawrence, A., Trujillo, D., Feltham, I., López, L. F. et al. (2016). Structural use of bamboo Part 3: Design values. Journal of the Institution of Structural Engineer, 94(12), 42–45.
  • Karihaloo, B. L. (,2014). A new philosophy for the design of RC structures based on concepts of fracture mechanics. Procedia Materials Science, 3(2014), 369–377. https://doi.org/10.1016/j.mspro.2014.06.063
  • Moehle, J. P. (1992). Displacement-based design of RC structures subjected to earthquakes. Earthquake Spectra, 8(3), 403–428. https://doi.org/10.1193/1.1585688
  • Muljati, I., & Hartono, A. (2017). Multi performance option in direct displacement based design (pp. 5020). EDP Sciences.
  • Perfetto, D., Lamanna, G., Sepe, R., & De Luca, A., 2020. Design of a bamboo treadmill bicycle main frame. In Macromolecular Symposia, February, 389 (Willy Online Library) ( 1),p. 1900101.
  • Sedlacek, G., & Stangenberg, H. (2000). Design philosophy of Eurocodes—background information. Journal of Constructional Steel Research, 54(1), 173–190. https://doi.org/10.1016/S0143-974X(99)00096-6
  • Sharma, B., Gatoo, A., Bock, M., Mulligan, H., Ramage, M. et al. (2015). Engineered bamboo: State of the art. Proceedings of Institution of Civil Engineers: Construction Materials, 168(2), 57–67. http://dx.doi.org/10.1680/coma.14.00020.
  • Sharma, B., Gatóo, A., Bock, M., & Ramage, M. (2015). Engineered bamboo for structural applications. Construction and Building Materials, 81 15 April 2015, 66–73. https://doi.org/10.1016/j.conbuildmat.2015.01.077
  • Silva, J., Farbiarz, T. D., J. L, & Silvasy, T. (2019). Learning from Bamboo: Building a Bamboo Structure Collectively (pp. 243–254). Blucher Proceedings.
  • Tahmasebinia, F., McDougall, R., Sepasgozar, S., Abberton, E., Joung, G. H., Joya, M. P., Sepasgozar, S. M. E., & Marroquin, F. A. (2020). Development of preliminary curved bamboo member design guidelines through finite element analysis. Sustainability, 12(3), 822. https://doi.org/10.3390/su12030822
  • Trujillo, D. (2013August). Prospects for a method to infer non-destructively the strength of bamboo: A research proposal. Taylor & Francis.
  • Trujillo, D., Jangra, S., & Gibson, J. M. (2017). Flexural properties as a basis for bamboo strength grading. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 170(4), 284–294. https://doi.org/10.1680/jstbu.16.00084
  • Trujillo, D. J., & López, L. F. (2020). Bamboo material characterisation Harries, Kent A., Sharma, Bhavna. In Nonconventional and vernacular construction materials 2 (pp. 491–520 9780081027042 https://doi.org/10.1016/B978-0-08-102704-2.00018-4). Woodhead Publishing.
  • Vagias, W. M. (2006). Likert-type scale response anchors. Clemson International Institute for Tourism & Research Development, Department of Parks, Recreation and Tourism Management. Clemson University.
  • Van der Lugt, P., Van den Dobbelsteen, A. A. J. F., & Janssen, J. J. A. (2006). An environmental, economic and practical assessment of bamboo as a building material for supporting structures. Construction and Building Materials, 20(9), 648–656. https://doi.org/10.1016/j.conbuildmat.2005.02.023
  • Van der Werf, P., & Gilliland, J., 2017. A systematic review of food losses and food waste generation in developed countries. In Proceedings of the Institution of Civil Engineers-Waste and Resource Management, , 170 (Thomas Telford Ltd.)(), pp. 66–77.
  • Wang, T. H., Espinosa Trujillo, O., Chang, W. S., & Deng, B. (2017). Encoding bamboo’s nature for freeform structure design. International Journal of Architectural Computing, 15(2), 169–182. https://doi.org/10.1177/1478077117714943
  • Whiting, P., Savović, J., Higgins, J. P. T., Caldwell, D. M., Reeves, B. C., Shea, B., Davies, P., Kleijnen, J., & Churchill, R. (2016). ROBIS: A new tool to assess risk of bias in systematic reviews was developed. Journal of Clinical Epidemiology, 69(1), 225–234. https://doi.org/10.1016/j.jclinepi.2015.06.005
  • Witte, D. (2019). Structural bamboo building codes: Catalysts for industry, research, and construction technology. Technology Architecture and Design, 3(1), 50–64. https://doi.org/10.1080/24751448.2019.1571824.
  • Xu, X., Xu, P., Zhu, J., Li, H., & Xiong, Z. (2022). Bamboo construction materials: Carbon storage and potential to reduce associated CO2 emissions. Science of the Total Environment, 814, March 2022, 152697. https://doi.org/10.1016/j.scitotenv.2021.152697
  • Zhihua, C., Rui, M., Yansheng, D., & Xiaodun, W. (2022). State-of-the-art review on research and application of original bamboo-based composite components in structural engineering. Structures, 35, January 2022, 1010–1029. https://doi.org/10.1016/j.istruc.2021.11.059