620
Views
0
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Mechanistic comparison of N2 and H2 dilution effects on soot formation processes in laminar ethylene diffusion flames

& ORCID Icon
Article: 2130192 | Received 17 Aug 2022, Accepted 23 Sep 2022, Published online: 10 Oct 2022

References

  • Abhinavam Kailasanathan, R. K., Yelverton, T. L. B., Fang, T., & Roberts, W. L. (2013). Effect of diluents on soot precursor formation and temperature in ethylene laminar diffusion flames. Combustion and Flame, 160(3), 656–17. https://doi.org/10.1016/j.combustflame.2012.11.004
  • Al-Qurashi, K., Lueking, A. D., & Boehman, A. L. (2011). The deconvolution of the thermal, dilution, and chemical effects of exhaust gas recirculation (EGR) on the reactivity of engine and flame soot. Combustion and Flame, 158(9), 1696–1704. https://doi.org/10.1016/j.combustflame.2011.02.006
  • Boiarciuc, A., Foucher, F., & Mounaïm-Rousselle, C. (2006). Soot volume fractions and primary particle size estimate by means of the simultaneous two-color-time-resolved and 2D laser-induced incandescence. Applied Physics B, 83(3), 413–421. https://doi.org/10.1007/s00340-006-2236-8
  • De Iuliis, S., Maffi, S., Migliorini, F., Cignoli, F., & Zizak, G. (2012). Effect of hydrogen addition on soot formation in an ethylene/air premixed flame. Applied Physics B, 106(3), 707–715. https://doi.org/10.1007/s00340-012-4903-2
  • Do, H. Q., Tran, L. S., Gasnot, L., Mercier, X., & El Bakali, A. (2021). Experimental study of the influence of hydrogen as a fuel additive on the formation of soot precursors and particles in atmospheric laminar premixed flames of methane. Fuel, 287, 119517. https://doi.org/10.1016/j.fuel.2020.119517
  • Eaves, N. A., Dworkin, S. B., & Thomson, M. J. (2015). The importance of reversibility in modeling soot nucleation and condensation processes, proc. Proceedings of the Combustion Institute, 35(2), 1787–1794. https://doi.org/10.1016/j.proci.2014.05.036
  • Eaves, N. A., Dworkin, S. B., & Thomson, M. J. (2017). Assessing relative contributions of PAHs to soot mass by reversible heterogeneous nucleation and condensation, Proc. Proceedings of the Combustion Institute, 36(1), 935–945. https://doi.org/10.1016/j.proci.2016.06.051
  • Eaves, N. A., Thomson, M. J., & Dworkin, S. B. (2013). The effect of conjugate heat transfer on soot formation modeling at elevated pressures. Combustion Science and Technology, 185(12), 1799–1819. https://doi.org/10.1080/00102202.2013.839554
  • Eaves, N. A., Zhang, Q., Liu, F., Guo, H., Dworkin, S. B., & Thomson, M. J. (2016). CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames. Computer Physics Communications, 207, 464–477. https://doi.org/10.1016/j.cpc.2016.06.016
  • Gu, M., Chu, H., & Liu, F. (2016). Effects of simultaneous hydrogen enrichment and carbon dioxide dilution of fuel on soot formation in an axisymmetric coflow laminar ethylene/air diffusion flame. Combustion and Flame, 166, 216–228. https://doi.org/10.1016/j.combustflame.2016.01.023
  • Guo, H., Liu, F., Smallwood, G. J., & Gülder, Ö. L. (2006). Numerical study on the influence of hydrogen addition on soot formation in a laminar ethylene-air diffusion flame. Combustion and Flame, 145(1–2), 324–338. https://doi.org/10.1016/j.combustflame.2005.10.016
  • Joo, H. I., & Gülder, Ö. L. (2011). Experimental study of soot and temperature field structure of laminar co-flow ethylene-air diffusion flames with nitrogen dilution at elevated pressures. Combustion and Flame, 158(3), 416–422. https://doi.org/10.1016/j.combustflame.2010.09.013
  • Ju, E. L., Oh, K. C., & Shin, H. D. (2005). Soot formation in inverse diffusion flames of diluted ethene. Fuel, 84(5), 543–550. https://doi.org/10.1016/j.fuel.2004.11.003
  • Kailasanathan, R. K. A., Zhang, J., Fang, T., & Roberts, W. L. (2014). Effects of diluents on soot surface temperature and volume fraction in diluted ethylene diffusion flames at pressure. Combustion Science and Technology, 186(6), 815–828. https://doi.org/10.1080/00102202.2013.878710
  • Khanehzar, A., Cepeda, F., & Dworkin, S. B. (2022). The influence of nitrogen and hydrogen addition/dilution on soot formation in coflow ethylene/air diffusion flames. Fuel, 309, 122244. https://doi.org/10.1016/J.FUEL.2021.122244
  • Kholghy, M. R., Eaves, N. A., Veshkini, A., & Thomson, M. J. (2019). The role of reactive PAH dimerization in reducing soot nucleation reversibility. Proceedings of the Combustion Institute, 37(1), 1003–1011. https://doi.org/10.1016/j.proci.2018.07.110
  • Kholghy, M. R., Kelesidis, G. A., & Pratsinis, S. E. (2018). Reactive polycyclic aromatic hydrocarbon dimerization drives soot nucleation. Phys. Chem. Chem. Phys, 20 16 , 10925–10938. https://doi.org/10.1039/c7cp07803j
  • Kholghy, M. R., Veshkini, A., & Thomson, M. J. (2016). The core-shell internal nanostructure of soot - A criterion to model soot maturity. Carbon N. Y, 100, 508–536. https://doi.org/10.1016/j.carbon.2016.01.022
  • Liu, D. (2014). Kinetic analysis of the chemical effects of hydrogen addition on dimethyl ether flames. International Journal of Hydrogen Energy, 39(24), 13014–13019. https://doi.org/10.1016/j.ijhydene.2014.06.072
  • Liu, F., Guo, H., Smallwood, G. J., & Gülder, Ö. L. (2001). The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: Implications for soot and NOx formation. Combustion and Flame, 125(1–2), 778–787. https://doi.org/10.1016/S0010-2180(00)00241-8
  • Liu, F., Karataş, A. E., Gülder, Ö. L., & Gu, M. (2015). Numerical and experimental study of the influence of CO2 and N2 dilution on soot formation in laminar coflow C2H4/air diffusion flames at pressures between 5 and 20 atm. Combustion and Flame, 162(5), 2231–2247. https://doi.org/10.1016/j.combustflame.2015.01.020
  • Naseri, A., Veshkini, A., & Thomson, M. J. (2017). Detailed modeling of CO2 addition effects on the evolution of soot particle size distribution functions in premixed laminar ethylene flames. Combustion and Flame, 183, 75–87. https://doi.org/10.1016/j.combustflame.2017.04.028
  • Park, S. H., Lee, K. M., & Hwang, C. H. (2011). Effects of hydrogen addition on soot formation and oxidation in laminar premixed C2H2/air flames. International Journal of Hydrogen Energy, 36(15), 9304–9311. https://doi.org/10.1016/j.ijhydene.2011.05.031
  • Qiu, L., Hua, Y., Zhuang, Y., Wei, J., Qian, Y., & Cheng, X. (2020). Numerical investigation into the decoupling effects of hydrogen blending on flame structure and soot formation in a laminar ethylene diffusion flame. International Journal of Hydrogen Energy, 45(31), 15672–15682. https://doi.org/10.1016/j.ijhydene.2020.04.033
  • Roper, F. G. (1977). The prediction of laminar jet diffusion flame sizes: Part I. Combustion and Flame, 29, 219–226. https://doi.org/10.1016/0010-2180(77)90112-2
  • Shao, C., Campuzano, F., Zhai, Y., Wang, H., Zhang, W., & Mani Sarathy, S. (2022). Effects of ammonia addition on soot formation in ethylene laminar premixed flames. Combustion and Flame, 235, 111698. https://doi.org/10.1016/j.combustflame.2021.111698
  • Smooke, M. D., Long, M. B., Connelly, B. C., Colket, M. B., & Hall, R. J. (2005). Soot formation in laminar diffusion flames. Combustion and Flame, 143(4), 613–628. https://doi.org/10.1016/j.combustflame.2005.08.028
  • Sun, Z., Dally, B., Nathan, G., & Alwahabi, Z. (2017). Effects of hydrogen and nitrogen on soot volume fraction, primary particle diameter and temperature in laminar ethylene/air diffusion flames. Combustion and Flame, 175, 270–282. https://doi.org/10.1016/j.combustflame.2016.08.031
  • Tang, Q., Mei, J., & You, X. (2016). Effects of CO2 addition on the evolution of particle size distribution functions in premixed ethylene flame. Combustion and Flame, 165, 424–432. https://doi.org/10.1016/j.combustflame.2015.12.026
  • Veshkini, A., Dworkin, S. B., & Thomson, M. J. (2015). A soot particle surface reactivity model applied to a wide range of laminar ethylene/air flames. Combustion and Flame, 161(12), 3191–3200. https://doi.org/10.1016/j.combustflame.2014.05.024
  • Veshkini, A., Eaves, N. A., Dworkin, S. B., & Thomson, M. J. (2016). Application of PAH-condensation reversibility in modeling soot growth in laminar premixed and nonpremixed flames. Combustion and Flame, 167, 335–352. https://doi.org/10.1016/j.combustflame.2016.02.024
  • Wang, Y., & Chung, S. H. (2016). Formation of soot in counterflow diffusion flames with carbon dioxide dilution. Combustion Science and Technology, 188(4–5), 805–817. https://doi.org/10.1080/00102202.2016.1139388
  • Wang, Y., Gu, M., Chao, L., Wu, J., Lin, Y., & Huang, X. (2021). Different chemical effect of hydrogen addition on soot formation in laminar coflow methane and ethylene diffusion flames. International Journal of Hydrogen Energy 46 29 16063–16074 . https://doi.org/10.1016/j.ijhydene.2021.02.014
  • Wang, F., Li, P., Mi, J., Wang, J., & Xu, M. (2015). Chemical kinetic effect of hydrogen addition on ethylene jet flames in a hot and diluted coflow. International Journal of Hydrogen Energy, 40 46 , 16634–16648. https://doi.org/10.1016/j.ijhydene.2015.09.047
  • Wang, Y., Liu, X., Gu, M., & An, X. (2018). Numerical simulation of the effects of hydrogen addition to fuel on the structure and soot formation of a laminar axisymmetric coflow C 2 H 4 /(O 2 -CO 2) Diffusion Flame. Combustion Science and Technology, 191(10), 1743–1768. https://doi.org/10.1080/00102202.2018.1532413
  • Yen, M., Magi, V., & Abraham, J. (2019). Modeling the effects of hydrogen and nitrogen addition on soot formation in laminar ethylene jet diffusion flames. Chemical Engineering Science, 196 , 116–129. https://doi.org/10.1016/j.ces.2018.07.061
  • Ying, Y., & Liu, D. (2015). Detailed influences of chemical effects of hydrogen as fuel additive on methane flame. International Journal of Hydrogen Energy, 40(9), 3777–3788. https://doi.org/10.1016/j.ijhydene.2015.01.076
  • Zhang, Y., Liu, F., & Lou, C. (2018). Experimental and numerical investigations of soot formation in laminar coflow ethylene flames burning in O 2 /N 2 and O 2 /CO 2 atmospheres at different O 2 mole fractions. Energy and Fuels, 32(5), 6252–6263. https://doi.org/10.1021/acs.energyfuels.7b04069
  • Zhao, H., Stone, R., & Williams, B. (2014). Investigation of the soot formation in ethylene laminar diffusion flames when diluted with helium or supplemented by hydrogen. Energy and Fuels, 28(3), 2144–2151. https://doi.org/10.1021/ef401970q