1,314
Views
2
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Thermal modeling of the convective heat transfer in the large air cavities of the 3D concrete printed walls

ORCID Icon, , , , , , & show all
Article: 2130203 | Received 24 Feb 2022, Accepted 26 Sep 2022, Published online: 10 Oct 2022

References

  • Ali, M. H., Issayev, G., Shehab, E., & Sarfraz, S. (2022, January). A critical review of 3D printing and digital manufacturing in construction engineering. Rapid Prototyping Journal, 28 (7), 1312–18. https://doi.org/10.1108/RPJ-07-2021-0160
  • Alkhalidi, A., & Hatuqay, D. (2020). Energy efficient 3D printed buildings: Material and techniques selection worldwide study. Journal of Building Engineering, 30, 101286. https://doi.org/10.1016/j.jobe.2020.101286
  • Antar, M. A., & Baig, H. (2009). Conjugate conduction-natural convection heat transfer in a hollow building block. Applied Thermal Engineering, 29(17–18), 3716–3720. https://doi.org/10.1016/j.applthermaleng.2009.04.033
  • Arici, M., Karabay, H., & Kan, M. (2015). Flow and heat transfer in double, triple and quadruple pane windows. Energy and Buildings, 86, 394–402. https://doi.org/10.1016/j.enbuild.2014.10.043
  • Arici, M., Yilmaz, B., & Karabay, H. (2016). Investigation of heat insulation performance of hollow clay bricks filled with perlite. Acta Physica Polonica A, 130(1), 266–268. https://doi.org/10.12693/APhysPolA.130.266
  • Asan, H. (2000). Investigation of wall's optimum insulation position from maximum time lag and minimum decrement factor point of view. Energy and Buildings, 32(2), 197–203. https://doi.org/10.1016/S0378-7788(00)00044-X
  • Bouchair, A., Tsai, K.-C., Chiang, Y.-K., Jiaang, W.-T., Wu, S.-H., Mahindroo, N., Chien, C.-H., Lee, S.-J., Chen, X., Chao, Y.-S., & Wu, S.-Y. (2008). Steady state theoretical model of fired clay hollow bricks for enhanced external wall thermal insulation. European Journal of Medicinal Chemistry, 43(8), 1603–1618. https://doi.org/10.1016/j.buildenv.2007.10.005
  • Cho, S., Kruger, J., van Rooyen, A., & van Zijl, G. (2021, March). Rheology and application of buoyant foam concrete for digital fabrication. Composites Part B: Engineering, 215, 108800. https://doi.org/10.1016/j.compositesb.2021.108800
  • Cicione, A., Kruger, J., Walls, R. S., & Van Zijl, G. (2021). An experimental study of the behavior of 3D printed concrete at elevated temperatures. Fire Safety Journal, 120, 103075. April 2020 https://doi.org/10.1016/j.firesaf.2020.103075
  • Davies, T. (2012). Cavity walls—retro-injected insulation—kill or cure? Journal of Building Survey, Appraisal & Valuation, 1(4), 287–295.
  • Elenbaas, W. (1942). Heat dissipation of parallel plates by free convection. Physica, 9.1(1), 1–28. https://doi.org/10.1016/S0031-8914(42)90053-3
  • Gomaa, M., Carfrae, J., Goodhew, S., Jabi, W., Gomaa, M., Carfrae, J., Goodhew, S., & Jabi, W. (2019). Thermal performance exploration of 3D printed cob abstract. Architectural Science Review, 62(3), 230–237. https://doi.org/10.1080/00038628.2019.1606776
  • Gosselin, C., Duballet, R., Roux, P., Gaudillière, N., Dirrenberger, J., & Morel, P. (2016). Large-scale 3D printing of ultra-high performance concrete – A new processing route for architects and builders. Materials & Design, 100, 102–109. https://doi.org/10.1016/j.matdes.2016.03.097
  • Han, Y., Yang, Z., Ding, T., & Xiao, J. (2021). Environmental and economic assessment on 3D printed buildings with recycled concrete. Journal of Cleaner Production, 278, 123884. https://doi.org/10.1016/j.jclepro.2020.123884
  • Henrique Dos Santos, G., Fogiatto, M. A., & Mendes, N. (2017). Numerical analysis of thermal transmittance of hollow concrete blocks. Journal of Building Physics, 41(1), 7–24. https://doi.org/10.1177/1744259117698522
  • Huang, S., Xu, W., & Li, Y. (2022). The impacts of fabrication systems on 3D concrete printing building forms. Frontiers of Architectural Research, Xxxx, 11(4), 653–669. https://doi.org/10.1016/j.foar.2022.03.004
  • Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Gibb, A. G. F., & Thorpe, T. (2012). Mix design and fresh properties for high-performance printing concrete. Materials and structures, 45(8), 1221–1232. https://doi.org/10.1617/s11527-012-9828-z
  • Lithium, C., Pouch, I., Tests, P., Huang, M., Kong, L., Random, M., Memory, A., & Taniguchi, T. (2019). Thermal-humidity parameters of 3d printed wall thermal-humidity parameters of 3d printed wall. In IOP Conference Series: Materials Science and Engineering (Vol. 471, No. 8, p. 082018). IOP Publishing. https://doi.org/10.1088/1757-899X/471/8/082018
  • Lorente, S., & Bejan, A. (2002). Combinedflow and strength'geometric optimization: Internal structure in a vertical insulating wall with air cavities and prescribed strength. International Journal of Heat and Mass Transfer, 45(16), 3313–3320. https://doi.org/10.1016/S0017-9310(02)00052-2
  • Mahmoud, A. M., Ben-Nakhi, A., Alajmi, R. A. B.-N., & Alajmi, R. (2012). Conjugate conduction convection and radiation heat transfer through hollow autoclaved aerated concrete blocks. Journal of Building Performance Simulation, 5(4), 248–262. https://doi.org/10.1080/19401493.2011.565886
  • Marais, H., Christen, H., Cho, S., De Villiers, W., & Van Zijl, G. (2021, March). Computational assessment of thermal performance of 3D printed concrete wall structures with cavities. Journal of Building Engineering, 41, 102431. https://doi.org/10.1016/j.jobe.2021.102431
  • Nielsen, D. (2020). This 3D-printed village aims to house 40% of Austin’s homeless population. https://www.dwell.com/article/community-first-3d-printed-houses-icon-mobile-loaves-and-fishes-3f950815
  • Papachristoforou, M., Mitsopoulos, V., & Stefanidou, M. (2019). Use of by-products for partial replacement of 3D printed concrete constituents; rheology, strength and shrinkage performance. 50(50), 526–536. https://doi.org/10.3221/IGF-ESIS.50.44
  • Petter, B., Gustavsen, A., & Baetens, R. (2010). The path to the high performance thermal building insulation materials and solutions of tomorrow. Journal of building physics, 34(2), 99–123.
  • Rodriguez-Ubinas, E., Montero, C., Porteros, M., Vega, S., Navarro, I., Castillo-Cagigal, M., Matallanas, E., & Gutiérrez, A. (2014). Passive design strategies and performance of net energy plus houses. Energy and Buildings, 83, 10–22. https://doi.org/10.1016/j.enbuild.2014.03.074
  • Suntharalingam, T., Gatheeshgar, P., Upasiri, I., Poologanathan, K., Nagaratnam, B., Corradi, M., & Nuwanthika, D. (2021, June). Fire performance of innovative 3D printed concrete composite wall panels – A numerical study. Case Studies in Construction Materials, 15, e00586. https://doi.org/10.1016/j.cscm.2021.e00586
  • Suntharalingam, T., Gatheeshgar, P., Upasiri, I., Poologanathan, K., Nagaratnam, B., Rajanayagam, H., & Navaratnam, S. (2021). Numerical study of fire and energy performance of innovative light-weight 3d printed concrete wall configurations in modular building system. Sustainability, 13(4), 2314. https://doi.org/10.3390/su13042314
  • Suntharalingam, T., Upasiri, I., Gatheeshgar, P., Poologanathan, K., Nagaratnam, B., Santos, P., & Rajanayagam, H. (2021). Energy performance of 3d-printed concrete walls: A numerical study. Buildings, 11(10), 3–6. https://doi.org/10.3390/buildings11100432
  • Tay, Y. W. D., Panda, B. N., Ting, G. H. A., Ahamed, N. M. N., Tan, M. J., & Chua, C. K. (2019). 3D printing for sustainable construction. Industry 4.0 - shaping the future of the digital world - proceedings of the 2nd international conference on sustainable smart manufacturing, S2M 2019, March 2021, 119–123. https://doi.org/10.1201/9780367823085-22
  • Wakashima, S., & Saitoh, T. S. (2004). Benchmark solutions for natural convection in a cubic cavity using the high-order time – Space method. Journal of Heat and Mass Transfer, 47(4), 853–864. https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.008
  • Wang, L., Hailong, J., Zhijian, L., & Guowei, M. (2020). Mechanical behaviors of 3D printed lightweight concrete structure with hollow section. Archives of Civil and Mechanical Engineering, 20(1), 1–17. https://doi.org/10.1007/s43452-020-00017-1
  • Weger, D., Gehlen, C., Korte, W., Meyer, F., Jennifer, B., & Stengel, T. (2022). Building rethought – 3D concrete printing in building practice. Construction Robotics, 5(3), 203–210. https://doi.org/10.1007/s41693-022-00064-5
  • Xamán, J., Cisneros-carreño, J., Hernández-pérez, I., & Hernández-lópez, I. (2017). Thermal performance of a hollow block with/without insulating and reflective materials for roofing in Mexico. Journal of Applied Physiology (Bethesda, Md.: 1985), 123(1), 243–255. https://doi.org/10.1016/j.applthermaleng.2017.04.163
  • Zhang, Y., & Wang, Q. (2017). Influence of hollow block’s structural configuration on the thermal characteristics of hollow block wall. Procedia Engineering, 205, 2341–2348. https://doi.org/10.1016/j.proeng.2017.10.306
  • Zhang, T., & Yang, H. (2018). Optimal thickness determination of insulating air layers in building envelopes. Energy Procedia, 152, 444–449. https://doi.org/10.1016/j.egypro.2018.09.251