517
Views
0
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Heat transfer augmentation of Al2O3-Cu/water hybrid nanofluid in circular duct with inserts

, &
Article: 2146627 | Received 15 Jul 2022, Accepted 08 Nov 2022, Published online: 16 Nov 2022

References

  • Abdollahi, A., Mohammed, H. A., Vanaki, M., Osia, A., & Haghighi, M. R. G. (2017). Fluid flow and heat transfer of nanofluids in microchannel heat sink with V-type inlet/outlet arrangement. Alexandria Engineering Journal, I. https://doi.org/10.1016/j.aej.2016.09.019
  • Abdulwahab, M. R. (2014). A numerical investigation of turbulent magnetic nanofluid flow inside square straight channel. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 1. https://semarakilmu.com.my/index.php/journals/article/view/1790
  • Ahmed, M. A., Shuaib, N. H., & Yusoff, M. Z. (2012). Numerical investigations on the heat transfer enhancement in a wavy channel using nanofluid. International Journal of Heat and Mass Transfer, 55(21–22), 5891–17. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.086
  • Aljabair, S., Akeel Abdullah Mohammed, I. A., & Alesbe, I. (2020). Natural convection heat transfer in corrugated annuli with H2O-Al2O3 nanofluid. Heliyon, 6(11), e05568. https://doi.org/10.1016/j.heliyon.2020.e05568
  • Arjun , K. S., & Rakesh , K. (2020). Heat transfer in magnetohydrodynamic nanofluid flow past a circular cylinder. Physics of Fluids. https://doi.org/10.1063/5.0005095
  • Ashkan, V., & Mohammed, H. A. (2013). Turbulent nanofluid flow over periodic Rib-Grooved channels. Engineering Applications of Computational Fluid Mechanics, 7(3), 369–381. https://doi.org/10.1080/19942060.2013.11015478
  • Ekiciler, R., & Samet Ali Çetinkaya, M. (2021). A comparative heat transfer study between monotype and hybrid nanofluid in a duct with various shapes of ribs. Thermal Science and Engineering Progress. https://doi.org/10.1016/j.tsep.2021.100913
  • Emad, M.-S. E.-S., Abdulaziz, M., & Mohamed, M. A. (2017). A numerical investigation on heat transfer enhancement and the flow characteristics in a new type plate heat exchanger using helical flow duct. Cogent Engineering, 4(1), 1396638. https://doi.org/10.1080/23311916.2017.1396638
  • Hamdi, E. A., Salman, B. H., & Sh Kerbeet, A. (2019). Heat transfer enhancement of turbulent forced nanofluid flow in a duct using triangular rib. International Journal of Heat and Mass Transfer, 134. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.163
  • Harish Kumar, L., Kazi, S. N., Masjuki, H. H., & Zubir, M. N. M. (2022). A review of recent advances in green nanofluids and their application in thermal systems. Chemical Engineering Journal, 429. https://doi.org/10.1016/j.cej.2021.132321
  • Hossein Shiravi, A., Firoozzadeh, M., Bostani, H., & Bozorgmehrian, M. (2020). Experimental study on convective heat transfer and entropy generation of carbon black nanofluid turbulent flow in a helical coiled heat exchanger. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-020-09729-1
  • Jiat Kendrick Wong, I. (2021). Ngieng Tze Angnes Tiong. Simulation approach on turbulent thermal performance factor of Al2O3‑Cu/water hybrid nanofluid in circular and non‑circular ducts. SN Applied Sciences. https://doi.org/10.1007/s42452-021-04317-w
  • Kumar, S., Darshan Kothiyal, A., Singh Bisht, M., & Kuma, A. (2017). Turbulent heat transfer and nanofluid flow in a protruded ribbed square passage. Results in Physics, 7, 3603–3618. https://doi.org/10.1016/j.rinp.2017.09.023
  • Kumar, P., & Dr, K. M. P. (2017). Effect on heat transfer characteristics of nanofluids flowing under laminar and turbulent flow regime – a review. IOP Conf Series: Materials Science and Engineering 225, 012168. https://doi.org/10.1088/1757-899X/225/1/012168
  • Lin, W., Shi, R., & Lin, J. (2022). Heat transfer and pressure drop of nanofluid with rod-like particles in turbulent flows through a curved pipe. Entropy, 24(3), 416. https://doi.org/10.3390/e24030416
  • Mehrjou, B., Zeinali Heris, S., & Mohamadifard, K. (2015). Experimental study Of CuO/Water Nanofluid turbulent convective heat transfer in square cross-section duct. Experimental Heat Transfer, 28(3), 282–297. https://doi.org/10.1080/08916152.2013.871606
  • Moghadassi, A., Fahime Parvizian, E. G., & Parvizian, F. (2015). A numerical study of water based Al2O3 and Al2O3-Cu hybrid nanofluid effect on forced convective heat transfer. International Journal of Thermal Sciences, 92, 50–57. https://doi.org/10.1016/j.ijthermalsci.2015.01.025
  • Moghaddami, M., Ehsan Shahidi, S., & Siavashi, M. (2012). Entropy generation analysis of nanofluid flow in turbulent and laminar regimes. Journal of Computational and Theoretical Nanoscience, 9(10), 1–10. https://doi.org/10.1166/jctn.2012.2249
  • Nakhchi, M. E., & Esfahani, J. A. (2020). Numerical investigation of turbulent CuO–water nanofluid inside heat exchanger enhanced with double V‑cut twisted tapes. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-020-09788-4
  • Nasrin, R., Sweety, S. A., & Zahan, I. (2021). Turbulent nanofluid flow analysis passing a shell and tube thermal exchanger with Kays-Crawford model. Journal of Nanofluids, 10(4), 518–537. https://doi.org/10.1166/jon.2021.1803
  • Navaei, A. S., Mohammed, H. A., Munisamy, K. M., Yarmand, H., & Gharehkhani, S. (2015). Heat transfer enhancement of turbulent nanofluids flow over various types of internally corrugated channels. Powder Technology, 286, 332–341. https://doi.org/10.1016/j.powtec.2015.06.009
  • Pehlivan, H., Taymaz, I., & İslamoğlu, Y. (2013). Experimental study of forced convective heat transfer in a different arranged corrugated channel. International Communications in Heat and Mass Transfer, 46, 106–111. https://doi.org/10.1016/j.icheatmasstransfer.2013.05.016
  • Peyghambarzadeh, S. M., Hashemabadi, S. H., Chabi, A. R., & Salimi, M. (2014). Performance of water-based CuO and Al2O3 nanofluids in a Cu–Be alloy heat sink with rectangular microchannels, energy conversion and management 86, 28–38. https://www.sciencedirect.com/science/article/abs/pii/S0196890414004245
  • Rabienataj Darzi, A. A., Sedighi, K., Shafaghat, R., Zabihi, K., & Zabihi, K. (2012). Experimental investigation of turbulent heat transfer and flow characteristics of SiO2/water nanofluid within helically corrugated tubes. International Communications in Heat and Mass Transfer, 39(9), 1425–1434. https://doi.org/10.1016/j.icheatmasstransfer.2012.07.027
  • Raei, B., Shahraki, F., & Mohammad Jamialahmadi, S. M. P. (2016). Experimental study on the heat transfer and flow properties of -Al2O3/water nanofluid in a double-tube heat exchanger. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-016-5868-x
  • Sakanova, A., Yin, S., Zhao, J., Wu, J. M., & Leong, K. C. (2014). Optimization and comparison of double-layer and double-side micro-channel heat sinks with nanofluid for power electronics cooling. Applied Thermal Engineering, 65(1–2), 124–134. https://doi.org/10.1016/j.applthermaleng.2014.01.005
  • Sh, M. V., Mohammed, H. A., Ayoub Abdollahi, M. A. W., & Wahid, M. A. (2014). Effect of nanoparticle shapes on the heat transfer enhancement in a wavy channel with different phase shifts. Journal of Molecular Liquids, 196, 32–42. https://doi.org/10.1016/j.molliq.2014.03.001
  • Suresh, S., Venkitaraj, K. P., Selvakumar, P., & Chandrasekar, M. (2012). Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Experimental Thermal and Fluid Science, 38, 54–60. https://doi.org/10.1016/j.expthermflusci.2011.11.007
  • Takabi, B., & Shokouhmand, H. (2015). Effects of Al2 O3 – Cu/water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime. International Journal of Modern Physics C, 26(4), 1550047. https://doi.org/10.1142/S0129183115500473
  • Xia, G. D., Liu, R., Wang, J., & Du, M. (2016). The characteristics of convective heat transfer in microchannel heat sinks using Al2O3 and TiO2 nanofluids. International Communications in Heat and Mass Transfer, 76, 256–264. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.034
  • Ziaei-Rad, M., & Beigi, M. (2016). Numerical study of turbulent nanofluid flow at the entrance region of a ribbed pipe. Physica Scripta, 91(3), 034004. https://doi.org/10.1088/0031-8949/91/3/034004