1,028
Views
1
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

CFD analysis of hydrodynamic journal bearing with Bingham plastic lubricant considering roughness

, , , , , & show all
Article: 2213537 | Received 11 Oct 2022, Accepted 09 May 2023, Published online: 17 May 2023

References

  • Abd Al-Samieh, M. F. (2019). Surface roughness effects for newtonian and non-newtonian lubricants. Tribology in Industry, 41(1), 56–16. https://doi.org/10.24874/ti.2019.41.01.07
  • Adams, T., Grant, C., & Watson, H. (2012). A simple algorithm to relate measured surface roughness to equivalent sand-grain roughness. International Journal of Mechanical Engineering and Mechatronics (IJMEM), 1, 66–71. https://doi.org/10.11159/IJMEM.2012.008
  • ANSYS Inc. (2019). Ansys fluent theory guide 19.0. Canonsburg.
  • Bhaskar, S. U., Hussain, M. M., & Ali, M. Y. (2013). Stability analysis on plain journal bearing with effect of surface roughness. International Journal of Scientific & Engineering Research, 4, 1–8.
  • Chen, H., & Zhang, Y. (2019). Hydrodynamic journal bearing with slippage sleeve surface. Australian Journal of Mechanical Engineering, 19(2), 1–10. https://doi.org/10.1080/14484846.2019.1587812
  • Cui, S., Gu, L., Fillon, M., Wang, L., & Zhang, C. (2018). The effects of surface roughness on the transient characteristics of hydrodynamic cylindrical bearings during startup. Tribology International, 128, 421–428. https://doi.org/10.1016/j.triboint.2018.06.010
  • Dang, R. K., Goyal, D., Chauhan, A., & Dhami, S. S. (2020). Effect of non-newtonian lubricants on static and dynamic characteristics of journal bearings. Materials Today: Proceedings, 28, 1345–1349. https://doi.org/10.1016/j.matpr.2020.04.727
  • Frene, J., Arghira, M., & Constantinescub, V. (2006). Combined thin-film and Navier–Stokes analysis in high reynolds number lubrication. Tribology International, 39(8), 734–747. https://doi.org/10.1016/j.triboint.2005.07.004
  • Gertzos, K. P., Nikolakopoulos, P. G., & Papadopoulos, C. A. (2008). CFD analysis of journal bearing hydrodynamic lubrication by Bingham lubricant. Tribology International, 41(12), 1190–1204. https://doi.org/10.1016/j.triboint.2008.03.002
  • Hsu, T. C., Chen, J. H., Chiang, H. L., & Chou, T. L. (2013). Lubrication performance of short journal bearings considering the effects of surface roughness and magnetic field. Tribology International, 61, 169–175. https://doi.org/10.1016/j.triboint.2012.12.016
  • Japanese Industrial Standard/Japanese Standards Association JIS B 0601. (2013). Geometrical product specifications (gps)—surface texture: Profile method—terms, definitions and surface texture parameters (foreign standard). Japanese Industrial Standard/Japanese Standards Association. January 2013.
  • , J., Mazdrakova, A., Andonov, I., & Radulescu, A. (2016a). Analysis of HD journal bearings considering elastic deformation and non-newtonian Rabinowitsch fluid model. Tribology in Industry, 38, 186–196.
  • , J., Stanulov, K., Alexandrov, A., & Iliuta, V. (2016b). Journal bearings lubrication of non-newtonian lubricants with surface roughness effects. Journal of the Balkan Tribological Association, 22, 433–443.
  • Kalavathi, G. K., Dinesh, P. A., & Gururajan, K. (2016). Influence of roughness on porous finite journal bearing with heterogeneous slip/no-slip surface. Tribology International, 102, 174–181. https://doi.org/10.1016/j.triboint.2016.05.032
  • Kouidera, M., Djallela, Z., Abdelkaderb, Y., & Sahraouia, K. (2021). Mathematical modelling of journal bearing lubricated with non-newtonian fluid. Tribology in Industry, 43, 615–623. https://doi.org/10.24874/ti.1117.05.21.09
  • Lampaert, S. G. E., & van Ostayen, R. A. J. (2019). Load and stiffness of a hydrostatic bearing lubricated with a Bingham plastic fluid. Journal of Intelligent Material Systems and Structures, 30(20), 1–10. https://doi.org/10.1177/1045389X19873426
  • Lampaert, S. G. E., & van Ostayen, R. A. J. (2020). Lubrication theory for Bingham plastics. Tribology International, 147, 1–7. https://doi.org/10.1016/j.triboint.2020.106160
  • Lin, J. R., Chu, L. M., Hung, T. C., & Wang, P. Y. (2016). Derivation of two-dimensional non-newtonian reynolds equation and application to power-law film slider bearings: Rabinowitsch fluid model. Applied Mathematical Modelling, 40(19–20), 8832–8841. https://doi.org/10.1016/j.apm.2016.04.030
  • Marey, N., Hegazy, E., El-Gamal, H., Ali, A., & Bassam, A. (2021). Journal bearing performance – state of the art. Sylwan, 165, 390–416.
  • Meng, F., Shu, R., & Chen, L. (2020). Influences of operation parameters on noise of journal bearing with compound texture considering lubricant thermal effect. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 234(7), 991–1006. https://doi.org/10.1177/1350650119868910
  • Meng, F., Yu, H., Gui, C., & Chen, L. (2019). Experimental study of compound texture effect on acoustic performance for lubricated textured surfaces. Tribology International, 133, 47–54. https://doi.org/10.1016/j.triboint.2018.12.036
  • Meng, F. M., & Zhang, W. (2018). Effects of compound groove texture on noise of journal bearing. Journal of Tribology, 140(3), 031703. https://doi.org/10.1115/1.4038353
  • Proudman, I. (1952). The generation of noise by isotropic turbulence. Physical, and Engineering Sciences, 214, 119–132. https://doi.org/10.1098/rspa.1952.0154
  • Stout, K. J., & Rowe, W. B. (1974). Externally pressurized bearings — design for manufacture part 1 — journal bearing selection. Tribology International, 7(3), 98–106. https://doi.org/10.1016/0041-2678(74)90009-8
  • Tauviqirrahman, M., Afif, M. F., Paryanto, P., Jamari, J., & Caesarendra, W. (2021). Investigation of the tribological performance of heterogeneous slip/no-slip journal bearing considering thermo-hydrodynamic effects. Fluids, 6(2), 48. https://doi.org/10.3390/fluids6020048
  • Tauviqirrahman, M., Jamari, J., Susilowati, S., Pujiastuti, C., Setiyana, B., Pasaribu, A. H., & Ammarullah, M. I. (2022). Performance comparison of newtonian and non-newtonian fluid on a heterogeneous slip/no-slip journal bearing system based on CFD-FSI method. Fluids, 7(7), 225. https://doi.org/10.3390/fluids7070225
  • Tauviqirrahman, M., Jamari, J., Wicaksono, A. A., Muchammad, M., Susilowati, S., Ngatilah, Y., & Pujiastuti, C. (2021). CFD analysis of journal bearing with a heterogeneous rough/smooth surface. Lubricants, 9(9), 88. https://doi.org/10.3390/lubricants9090088
  • Vaz, N., Binu, K. G., Serrao, P., Hemanth, M. P., Jacob, J., Roy, N., & Dias, E. (2017). Experimental investigation of frictional force in a hydrodynamic journal bearing lubricated with magnetorheological fluid. Journal of Mechanical Engineering and Automation, 7, 131–134.
  • Wada, S., Hayashi, H., & Haga, K. (1974). Behavior of a Bingham solid in hydrodynamic lubrication: Part 3, application to journal bearing. Bulletin of JSME, 17(111), 1182–1191. https://doi.org/10.1299/JSME1958.16.422
  • Walicka, A., Walicki, E., Jurczak, P., & Falicki, J. (2016). Curvilinear squeeze film bearing with rough surfaces lubricated by a Rabinowitsch–Rotem–Shinnar fluid. Applied Mathematical Modelling, 40(17–18), 7916–7927. https://doi.org/10.1016/j.apm.2016.03.048
  • Yin, B. B., Zhou, H., Xu, B., & Jia, H. (2018). The influence of roughness distribution characteristic on the lubrication performance of textured cylinder liners. Industrial Lubrication and Tribology, 71(3), 486–493. https://doi.org/10.1108/ILT-07-2018-0258
  • Zwart, P., Gerber, A., & Belamri, T. (2004). A two-phase flow model for predicting cavitation dynamics. In: ifth International Conference on Multiphase Flow, Yokohama, Japan, May 30–June3