1,124
Views
0
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Numerical investigation of aerodynamic characteristics of naca 23112 using passive flow control technique – gurney flaps

& ORCID Icon
Article: 2222566 | Received 29 Jun 2022, Accepted 04 Jun 2023, Published online: 21 Jun 2023

References

  • Ahmad, K. A., Mcewan, W., Watterson, J. K., and Cole, J., “RANS turbulence models for pitching airfoil,” 2005. [Online]. Available https://www.witpress.com
  • Baker, J. P., Standish, K. J., & van Dam, C. P. (2007). Two-dimensional wind tunnel and computational investigation of a Microtab Modified Airfoil. Journal of Aircraft, 44(2), 563–19. https://doi.org/10.2514/1.24502
  • Balduzzi, F., Drofelnik, J., Bianchini, A., Ferrara, G., Ferrari, L., & Campobasso, M. S. (2017, June). Darrieus wind turbine blade unsteady aerodynamics: A three-dimensional Navier-Stokes CFD assessment. Energy, 128, 550–563. https://doi.org/10.1016/J.ENERGY.2017.04.017
  • Bartl, J., Sagmo, K. F., Bracchi, T., & Sætran, L. (2019, May). Performance of the NREL S826 airfoil at low to moderate Reynolds numbers—A reference experiment for CFD models. European Journal of Mechanics - B/fluids, 75, 180–192. https://doi.org/10.1016/J.EUROMECHFLU.2018.10.002
  • Belabes, B., & Paraschivoiu, M. (2021, October). Numerical study of the effect of turbulence intensity on VAWT performance. Energy, 233, 121139. https://doi.org/10.1016/J.ENERGY.2021.121139
  • Bianchini, A., Balduzzi, F., diRosa, D., & Ferrara, G. (2019, March). On the use of Gurney Flaps for the aerodynamic performance augmentation of Darrieus wind turbines. Energy Conversion and Management, 184, 402–415. https://doi.org/10.1016/J.ENCONMAN.2019.01.068
  • Bloy, A. W., Tsioumanis, N., & Mellor, N. T. (1997). Enhanced aerofoil performance using small trailing-edge flaps. Journal of Aircraft, 34(4), 569–571. https://doi.org/10.2514/2.2210
  • Cakmakcioglu, S. C., Sert, I. O., Tugluk, O., & Sezer-Uzol, N. (2014, June). 2-D and 3-D CFD Investigation of NREL S826 airfoil at low Reynolds numbers. Journal of Physics: Conference Series, 524, 12028. https://doi.org/10.1088/1742-6596/524/1/012028
  • Cole, J. A., Vieira, B. A. O., Coder, J. G., Premi, A., & Maughmer, M. D. (2013). Experimental investigation into the effect of gurney flaps on various airfoils. Journal of Aircraft, 50(4), 1287–1294. https://doi.org/10.2514/1.C032203
  • Gai, S. L., & Palfrey, R. (2003, March). Influence of trailing-edge flow control on airfoil performance. Journal of Aircraft, 40(2), 332–337. https://doi.org/10.2514/2.3097
  • Giguère, P., Lemay, J., and Dumas, G., “Gurney flap effects and scaling for low-speed airfoils,” In 13th Applied Aerodynamics Conference, 1995, pp. 966–976. https://doi.org/10.2514/6.1995-1881.
  • Huang, B., Wang, P., Wang, L., Cao, T., Wu, D., & Wu, P. (2021, December). A combined method of CFD simulation and modified Beddoes-Leishman model to predict the dynamic stall characterizations of S809 airfoil. Renewable Energy, 179, 1636–1649. https://doi.org/10.1016/J.RENENE.2021.07.131
  • Ion, M., Radu, B., & Horia, D. (2012, December). Theoretical performances of double Gurney flap equipped the VAWTs. INCAS BULLETIN, 4(4), 93–99. https://doi.org/10.13111/2066-8201.2012.4.4.8
  • Jacobs, E. N. and Pinkerton, R. M., (1936). “NACA-Report 537.”
  • Jang, C. S., Ross, J. C., & Cummings, R. M. (1998). Numerical investigation of an airfoil with a Gurney flap. Aircraft Design, 1(2), 75–88. https://doi.org/10.1016/S1369-8869(98)00010-X.
  • Jeffrey, D., Zhang, X., & Hurst, D. W. (2000). Aerodynamics of Gurney flaps on a single-element high-lift wing. Journal of Aircraft, 37(2), 295–301. https://doi.org/10.2514/2.2593
  • Ji, B., Zhong, K., Xiong, Q., Qiu, P., Zhang, X., & Wang, L. (2022, June). CFD simulations of aerodynamic characteristics for the three-blade NREL Phase VI wind turbine model. Energy, 249, 123670. https://doi.org/10.1016/J.ENERGY.2022.123670
  • Katz, J., & Largman, R. (1989, April). Effect of 90 degree flap on the aerodynamics of a two-element airfoil. Journal of Fluids Engineering, Transactions of the ASME, 111(1), 93–94. https://doi.org/10.1115/1.3243605
  • Kentfield, J. (1993). The potential of Gurney flaps for improving the aerodynamic performance of helicopter rotors. Dec. https://doi.org/10.2514/6.1993-4883
  • Kentfield, J. A. C. (1994). Theoretically and experimentally obtained performances of Gurney-flap equipped wind turbines. Wind Engineering, 18(2), 63–74.
  • Kentfield, J. A. C., & Clavelle, E. J. (1993). The flow physics of Gurney flaps, devices for improving turbine blade performance. Wind Engineering, 17(1), 24–34.
  • Kinzel, M. P., Maughmer, M. D., & Lesieutre, G. A. (2007). Miniature trailing-edge effectors for rotorcraft performance enhancement. Journal of the American Helicopter Society, 52(2), 146–158.
  • Kotb, A. T. M., Nawar, M. A. A., Attai, Y. A., & Mohamed, M. H. (2022, September). Performance assessment of a modified wells turbine using an integrated casing groove and Gurney flap design for wave energy conversion. Renew Energy, 197, 627–642. https://doi.org/10.1016/J.RENENE.2022.07.140
  • “k-w SST turbulence model.” (Retrieved March 6, 2022). https://doi.org/10.2514/3.58406/
  • Liebeck, R. H. (1978, September). Design of subsonic airfoils for high lift. Journal of Aircraft, 15(9), 547–561.
  • Li, Y. C., Wang, J. J., Tan, G. K., & Zhang, P. F. (2002). Effects of Gurney flaps on the lift enhancement of a cropped nonslender delta wing. Experiments in Fluids, 32(1), 99–105. https://doi.org/10.1007/s003480200010
  • Li, Y., Wang, J., & Zhang, P. (2002). Effects of Gurney flaps on a NACA0012 airfoil. Flow Turbulence & Combustion, 68(1), 27. https://doi.org/10.1023/A:1015679408150
  • Li, Y., Wang, J., & Zhang, P. (2003). Influences of mounting angles and locations on the effects of Gurney flaps. Journal of Aircraft, 40(3), 494–498. https://doi.org/10.2514/2.3144
  • Maughmer, M. D., & Bramesfeld, G. (2008). Experimental investigation of Gurney flaps. Journal of Aircraft, 45(6), 2062–2067. https://doi.org/10.2514/1.37050
  • Meana-Fernández, A., Fernández Oro, J. M., Argüelles Díaz, K. M., & Velarde Suárez, S. (2019). Turbulence-model comparison for aerodynamic-performance prediction of a typical vertical-axis wind-turbine airfoil. Energies (Basel), 12(3), 488. https://doi.org/10.3390/en12030488
  • Menter, F. R. (1994, August). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605.
  • Myose, R., Heron, I., & Papadakis, M. (1996a). Effect of gurney flaps on a NACA 0011 airfoil. https://doi.org/10.2514/6.1996-59
  • Myose, R., Heron, I., & Papadakis, M. (1996b). Effect of Gurney flaps on a NACA 0011 airfoil. In 34th Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.1996-59/
  • Myose, R., Heron, I., & Papadakis, M. (1996c). The post-stall effect of Gurney flaps on a NACA-0011 airfoil. SAE Transactions, 105, 173–178. [Online]. Available. http://www.jstor.org/stable/44725501
  • Myose, R., Papadakis, M., & Heron, I. (1998). Gurney flap experiments on airfoils, wings, and reflection plane model. Journal of Aircraft, 35(2), 206–211. https://doi.org/10.2514/2.2309
  • Myose, R., Papadakis, M., Heron, I., & Angeles, L. (1996). The effect of Gurney flaps on three dimensional wings with and without taper. SAE Technical Paper, 965514. https://doi.org/10.4271/965514
  • Nakafuji, D. T. Y., van Dam, C. P., Smith, R. L., & Collins, S. D. (2001, July). Active load control for airfoils using microtabs. Journal of Solar Energy Engineering, 123(4), 282–289. https://doi.org/10.1115/1.1410110
  • Neuhart, D. H., & Pendergraft, O. C. (1988). A water tunnel study of Gurney flaps. NASA TM-4071. https://ntrs.nasa.gov/citations/19890004024
  • Ni, L., Miao, W., Li, C., & Liu, Q. (2021). Impacts of Gurney flap and solidity on the aerodynamic performance of vertical axis wind turbines in array configurations. Energy, 215, 118915. https://doi.org/10.1016/j.energy.2020.118915
  • Ouchene, S., Smaili, A., & Fellouah, H. (2018). Numerical simulation of a pitching NACA 0015 airfoil in deep stall regime: Comparison of turbulence models. 2018 International Conference on Wind Energy and Applications in Algeria (ICWEAA) (pp. 1–7). https://doi.org/10.1109/ICWEAA.2018.8605100
  • Palacios, J., Kinzel, M., Overmeyer, A., & Szefi, J. (2014). Active Gurney flaps: Their application in a rotor blade centrifugal field. Journal of Aircraft, 51(2), 473–489. https://doi.org/10.2514/1.C032082
  • Papadakis, M., Myose, R., Heron, I., and Johnson, B., “An experimental investigation of Gurney flaps on a GA(W)-2 airfoil with 25 percent slotted flap,” in 14th Applied Aerodynamics Conference, American Institute of Aeronautics and Astronautics, 1996. https://doi.org/10.2514/6.1996-2437.
  • Papadakis, M., Myose, R., Matallana, S., Papadakis, M., Myose, R., & Matallana, S. (1997). Experimental investigation of Gurney flaps on a two element general aviation airfoil. In 35th Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.1997-728
  • Ross, J. C., Storms, B. L., & Carrannanto, P. G. (1995, May). Lift-enhancing tabs on multielement airfoils. Journal of Aircraft, 32(3), 649–655. https://doi.org/10.2514/3.58406
  • Salcedo, S., Monge, F., Palacios, F., Gandia, F., Rodriguez, A., & Barcala, M. (2006, January). Gurney flaps and trailing edge devices for wind turbines. EWEC. Athens: EWEA, 2(64), 1180–2, 1184. https://www.researchgate.net/publication/291146203_Gurney_flaps_and_trailing_edge_devices_for_wind_turbines
  • Shukla, V., & Kaviti, A. K. (2017). Performance evaluation of profile modifications on straight-bladed vertical axis wind turbine by energy and spalart allmaras models. Energy, 126, 766–795. https://doi.org/10.1016/j.energy.2017.03.071
  • Storms, B. L., & Jang, C. S. (1994). Lift enhancement of an airfoil using a Gurney flap and vortex generators. Journal of Aircraft, 31(3), 542–547. https://doi.org/10.2514/3.46528
  • Storms, B. L., & Ross, J. C. (1995, September). Experimental study of lift-enhancing tabs on a two-element airfoil. Journal of Aircraft, 32(5), 1072–1078.
  • Suresh, M., & Sitaram, N. (2011). Gurney flap applications for aerodynamic flow control. Dec, ICME2011. https://me.buet.ac.bd/icme/icme2011/Proceedings/PDF/ICME%2011-FL-040.pdf
  • Syawitri, T. P., Yao, Y., Yao, J., & Chandra, B. (2022). Geometry optimization of vertical axis wind turbine with Gurney flap for performance enhancement at low, medium and high ranges of tip speed ratios. Sustainable Energy Technologies and Assessments, 49, 101779. https://doi.org/10.1016/j.seta.2021.101779
  • Traub, L. W., Miller, A. C., & Rediniotis, O. (2006). Preliminary parametric study of Gurney flap dependencies. Journal of Aircraft, 43(4), 1242–1244. https://doi.org/10.2514/1.13852
  • Troolin, D. R., Longmire, E. K., & Lai, W. T. (2006, August). Time resolved PIV analysis of flow over a NACA 0015 airfoil with Gurney flap. Experiments in Fluids, 41(2), 241–254. https://doi.org/10.1007/s00348-006-0143-8
  • van Dam, C. P., Yen, D. T., & Vijgen, P. M. H. W. (1999). Gurney flap experiments on airfoil and wings. Journal of Aircraft, 36(2), 484–486. https://doi.org/10.2514/2.2461
  • Vuillet, A., Roesch, P., & Aerospatiale Helicopter Divison. (1981). New designs for improved aerodynamic stability on recent aerospatiale helicopters. Proceedings of the 12th European Rotorcraft Forum, Garmisch-Partenkirchen, Germany.
  • Windi, I. S., Faris, M., & Kareem, H. H. (2014). Experimental and theoretical investigation for the improvement of the aerodynamic characteristic of NACA 0012 airfoil. International Journal of Mining, Metallurgy & Mechanical Engineering, 2(1). https://api.semanticscholar.org/CorpusID:212554656?utm_source=wikipedia
  • Yan, Y., Avital, E., Williams, J., & Cui, J. (2019, October). Performance improvements for a vertical axis wind turbine by means of Gurney flap. Journal of Fluids Engineering, 142(2), https://doi.org/10.1115/1.4044995
  • Yan, Y., Avital, E., Williams, J., & Korakianitis, T. (2019, May). CFD analysis for the performance of Gurney flap on aerofoil and vertical axis turbine. International Journal of Mechanical Engineering and Robotics Research, 8(3), 385–392. https://doi.org/10.18178/ijmerr.8.3.385-392
  • Yang, H., Shen, W., Xu, H., Hong, Z., & Liu, C. (2014, October). Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD. Renew Energy, 70, 107–115. https://doi.org/10.1016/J.RENENE.2014.05.002
  • Zhang, M., Wu, Q., Wang, G., Huang, B., Fu, X., & Chen, J. (2020, May). The flow regime and hydrodynamic performance for a pitching hydrofoil. Renew Energy, 150, 412–427. https://doi.org/10.1016/J.RENENE.2020.01.006
  • Zhu, H., Hao, W., Li, C., & Ding, Q. (2019, March). Numerical study of effect of solidity on vertical axis wind turbine with Gurney flap. Journal of Wind Engineering and Industrial Aerodynamics, 186, 17–31. https://doi.org/10.1016/J.JWEIA.2018.12.016