944
Views
0
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

Predicting the compressive strength of cellulose nanofibers reinforced concrete using regression machine learning models

ORCID Icon, , , , , , , , & show all
Article: 2225278 | Received 29 Nov 2022, Accepted 10 Jun 2023, Published online: 04 Jul 2023

References

  • Ahmad, A., Farooq, F., Niewiadomski, P., Ostrowski, K., Akbar, A., Aslam, F., & Alyousef, R. (2021). Prediction of compressive strength of fly ash based concrete using individual and ensemble algorithm. Materials, 14(4), 794. https://doi.org/10.3390/ma14040794
  • Ahmad, A., Ostrowski, K. A., Maślak, M., Farooq, F., Mehmood, I., & Nafees, A. (2021). Comparative study of supervised machine learning algorithms for predicting the compressive strength of concrete at high temperature. Materials, 14(15), 4222. https://doi.org/10.3390/ma14154222
  • Alzoubi, H. H., Albiss, B. A., & Abu Sini, S. S. (2020). Performance of cementitious composites with nano PCMs and cellulose nano fibers. Construction and Building Materials, 236, 117483. https://doi.org/10.1016/j.conbuildmat.2019.117483
  • Amiri, M., & Hatami, F. (2022). Prediction of mechanical and durability characteristics of concrete including slag and recycled aggregate concrete with artificial neural networks (ANNs). Construction and Building Materials, 325, 126839. https://doi.org/10.1016/j.conbuildmat.2022.126839
  • Ardanuy, M., Clarmunt, J., & Toledo Filho, R. D. (2012). Evaluation of durability to wet/dry cycling of cement mortar composites reinforced with nanofibrillated cellulose. Brittle Matrix Composites, 10 33–26.
  • Ardanuy Raso, M., Claramunt Blanes, J., Arévalo Peces, R., Parés Sabatés, F., Aracri, E., & Vidal Lluciá, T. (2012). Nanofibrillated cellulose (NFC) as a potential reinforcement for high performance cement mortar composites. BioResources, 7(3), 3883–3894. https://bioresources.cnr.ncsu.edu/resources/nanofibrillated-cellulose-nfc-as-a-potential-reinforcement-for-high-performance-cement-mortar-composites/
  • Balea, A., Fuente, E., Blanco, A., & Negro, C. (2019). Nanocelluloses: Natural-based materials for fiber-reinforced cement composites. A critical review. Polymers, 11(3), 518. https://doi.org/10.3390/polym11030518
  • Barabanshchikov, Y., Pham, H., & Usanova, K. (2021). Influence of microfibrillated cellulose additive on strength, elastic modulus, heat release, and Shrinkage of mortar and concrete. Materials, 14(22), 6933. https://doi.org/10.3390/ma14226933
  • Barnat-Hunek, D., Szymańska-Chargot, M., Jarosz-Hadam, M., & Łagód, G. (2019). Effect of cellulose nanofibrils and nanocrystals on physical properties of concrete. Construction and Building Materials, 223, 1–11. https://doi.org/10.1016/j.conbuildmat.2019.06.145
  • Chopra, P., Sharma, R. K., & Kumar, M. (2015). Artificial neural networks for the prediction of compressive strength of concrete. International Journal of Applied Science and Engineering, 13(3), 187–204. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002902
  • Claramunt, J., Ardanuy, M., & Fernandez-Carrasco, L. J. (2015). Wet/Dry cycling durability of cement mortar composites reinforced with micro-and nanoscale cellulose pulps. BioResources, 10(2), 3045–3055. https://doi.org/10.15376/biores.10.2.3045-3055
  • Claramunt, J., Ventura, H., Toledo Filho, R. D., & Ardanuy, M. (2019). Effect of nanocellulose on the microstructure and mechanical performance of CAC cementitious matrices. Cement and Concrete Research, 119, 64–76. https://doi.org/10.1016/j.cemconres.2019.02.006
  • Collet, F., Chamoin, J., Pretot, S., & Lanos, C. (2013). Comparison of the hygric behaviour of three hemp concretes. Energy and Buildings, 62, 294–303. https://doi.org/10.1016/j.enbuild.2013.03.010
  • Correia, V. C., Santos, S. F., & Savastano, H. J. (2015). Effect of the accelerated carbonation in fiber cement composites reinforced with eucalyptus pulp and nanofibrillated cellulose. Composites, 9(1), 7–10.
  • da Costa Correia, V., Ardanuy, M., Claramunt, J., & Savastano, H. (2019). Assessment of chemical and mechanical behavior of bamboo pulp and nanofibrillated cellulose exposed to alkaline environments. Cellulose, 26(17), 9269–9285. https://doi.org/10.1007/s10570-019-02703-7
  • da Costa Correia, V., Santos, S. F., Teixeira, R. S., & Junior, H. S. (2018). Nanofibrillated cellulose and cellulosic pulp for reinforcement of the extruded cement based materials. Construction and Building Materials, 160, 376–384. https://doi.org/10.1016/j.conbuildmat.2017.11.066
  • Dai, H., Jiao, L., Zhu, Y., & Pi, C. (2015). Nanometer cellulose fiber reinforced cement-based material. Patent Publication. No. CN105174768A. 23.
  • Da Silva, G. F., Martini, S., Moraes, J. C. B., & Teles, L. K. (2021). AC impedance spectroscopy (AC-IS) analysis to characterize the effect of nanomaterials in cement-based mortars. Construction and Building Materials, 269, 121260. https://doi.org/10.1016/j.conbuildmat.2020.121260
  • de Larrard, F., & Belloc, A. (1997). The influence of aggregate on the compressive strength of normal and high-strength concrete. Materials Journal, 94(5), 417–426.
  • de Prado-Gil, J., Palencia, C., Silva-Monteiro, N., & Martínez-García, R. (2022). To predict the compressive strength of self compacting concrete with recycled aggregates utilizing ensemble machine learning models. Case Studies in Construction Materials, 16, e01046. https://doi.org/10.1016/j.cscm.2022.e01046
  • El Bakkari, M., Bindiganavile, V., Goncalves, J., & Boluk, Y. (2019). Preparation of cellulose nanofibers by TEMPO-oxidation of bleached chemi-thermomechanical pulp for cement applications. Carbohydrate Polymers, 203, 238–245. https://doi.org/10.1016/j.carbpol.2018.09.036
  • Falinski, M. M., Plata, D. L., Chopra, S. S., Theis, T. L., Gilbertson, L. M., Zimmerman, & Zimmerman, J. B. (2018). J.B.A framework for sustainable nanomaterial selection and design based on performance, hazard, and economic considerations. Nature Nanotechnology, 13(8), 708–714. https://doi.org/10.1038/s41565-018-0120-4
  • Feng, D. C., Liu, Z. T., Wang, X. D., Chen, Y., Chang, J. Q., Wei, D. F., & Jiang, Z. M. (2020). Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach. Construction and Building Materials, 230, 117000. https://doi.org/10.1016/j.conbuildmat.2019.117000
  • Ferrara, L., Ferreira, S. R., Torre, M. D., Krelani, V., & Silva, F. A. D. (2015). Effect of cellulose nanopulp on autogenous and drying shrinkage of cement based composites. Nanotechnology in Construction, 325–330.
  • Fonseca, C. S., Silva, M. F., Mendes, R. F., Hein, P. R. G., Zangiacomo, A. L., Savastano, H., Jr., & Tonoli, G. H. D. (2019). Jute fibers and micro/nanofibrils as reinforcement in extruded fiber-cement composites. Construction and Building Materials, 211, 517–527. https://doi.org/10.1016/j.conbuildmat.2019.03.236
  • García, A., Gandini, A., Labidi, J., Belgacem, N., & Bras, J. (2016). Industrial and crop wastes: A new source for nanocellulose biorefinery. Industrial Crops and Products, 93, 26–38. https://doi.org/10.1016/j.indcrop.2016.06.004
  • Goncalves, J., El-Bakkari, M., Boluk, Y., & Bindiganavile, V. (2019). Cellulose nanofibres (CNF) for sulphate resistance in cement based systems. Cement and Concrete Composites, 99, 100–111. https://doi.org/10.1016/j.cemconcomp.2019.03.005
  • Hameed, M. M., AlOmar, M. K., Baniya, W. J., & AlSaadi, M. A. (2021). Incorporation of artificial neural network with principal component analysis and cross-validation technique to predict high-performance concrete compressive strength. Asian Journal of Civil Engineering, 22(6), 1019–1031. https://doi.org/10.1007/s42107-021-00362-3
  • Hilal, N. N., Alobaidi, Y. M., & Al-Hadithi, A. I. (2022, April 5). Viability of cellulose nanofibre powder and silica fume in self-compacting concrete rheology, hardened properties, and microstructure. Journal of King Saud University-Engineering Sciences, https://doi.org/10.1016/j.jksues.2022.03.003
  • Hisseine, O. A., Wilson, W., Sorelli, L., Tolnai, B., & Tagnit-Hamou, A. (2019). Nanocellulose for improved concrete performance: A macro-to-micro investigation for disclosing the effects of cellulose filaments on strength of cement systems. Construction and Building Materials, 206, 84–96. https://doi.org/10.1016/j.conbuildmat.2019.02.042
  • Hoyos, C. G., Zuluaga, R., Gañán, P., Pique, T. M., & Vazquez, A. (2019). Cellulose nanofibrils extracted from fique fibers as bio-based cement additive. Journal of Cleaner Production, 235, 1540–1548. https://doi.org/10.1016/j.jclepro.2019.06.292
  • Jha, A. K., Adhikari, S., Thapa, S., Kumar, A., Kumar, A., and Mishra, S. (2020). Evaluation of factors affecting compressive strength of concrete using machine learning. Proceedings of the 2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA), Cochin, India (pp. 70–74), IEEE.
  • Jiang, F., Li, T., Li, Y., Zhang, Y., Gong, A., Dai, J., Hitz, E., Luo, W., & Hu, L. (2018). Wood‐based nanotechnologies toward sustainability. Advanced Materials, 30(1), 1703453. https://doi.org/10.1002/adma.201703453
  • Jiao, L., Su, M., Chen, L., Wang, Y., Zhu, H., Dai, H., & Achal, V. (2016). Natural cellulose nanofibers as sustainable enhancers in construction cement. PLoS One, 11(12), e0168422. https://doi.org/10.1371/journal.pone.0168422
  • Jonoobi, M., Oladi, R., Davoudpour, Y., Oksman, K., Dufresne, A., Hamzeh, Y., & Davoodi, R. (2015). Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: A review. Cellulose, 22(2), 935–969. https://doi.org/10.1007/s10570-015-0551-0
  • Kamasamudram, K. S. (2019). Cellulose Nano-Composites for performance enhancement of Portland cement-based materials. Doctor of Philosophy, The University of Maine.
  • Kamasamudram, K. S., Ashraf, W., & Landis, E. N. (2021). Cellulose nanocomposites for performance enhancement of ordinary Portland cement-based materials. Transportation Research Record, 2675(9), 11–20. https://doi.org/10.1177/0361198120958421
  • Kolour, H. H. (2019). An investigation on the effects of cellulose nanofibrils on the performance of cement based composites. Doctor of Philosophy, The University of Maine.
  • Lehne, J.; Preston, F.; Making concrete change: Innovation in low-carbon cement and concrete.2018
  • Li, M. C., Wu, Q., Moon, R. J., Hubbe, M. A., & Bortner, M. J. (2021). Rheological aspects of cellulose nanomaterials: Governing factors and emerging applications. Advanced Materials, 33(21), 2006052. https://doi.org/10.1002/adma.202006052
  • Machado, F. G. D., Lemes, J. V. B., Pedroti, L. G., Lima, G. E. S., Fernandes, W. E. H., Gusmão, A. C., & Mendes, B. C. (2016). Evaluation of the mechanical properties of reactive powder concrete with the addition of nanofibrilated cellulose, in: 60° Congr. Bras. Cerâmica. in Portuguese.
  • Machado, F. G. D., Pedroti, L. G., Lemes, J. V. B., Lima, G. E. S., Fioresi, L. A. F., Fernandes, W. E. H., Alvarenga, R. C. S. S., & Alexandre, J. (2017). Addition of cellulose nanofibers in reactive powder concrete. In Characterization of Minerals, Metals, and Materials 2017 (pp. 529–535). Springer International Publishing. https://doi.org/10.1007/978-3-319-51382-9_57
  • Marani, A., & Nehdi, M. (2020). Machine learning prediction of compressive strength for phase change materials integrated cementitious composites, Constr. Construction and Building Materials, 265, 1–10. https://doi.org/10.1016/j.conbuildmat.2020.120286
  • Mejdoub, R., Hammi, H., Suñol, J. J., Khitouni, M., M ‘Nif, A., & Boufi, S. (2017). Nanofibrillated cellulose as nanoreinforcement in Portland cement: Thermal, mechanical and microstructural properties. Journal of Composite Materials, 51(17), 2491–2503. https://doi.org/10.1177/0021998316672090
  • Metaxa, Z. S., Tolkou, A. K., Efstathiou, S., Rahdar, A., Favvas, E. P., Mitropoulos, A. C., & Kyzas, G. Z. (2021). Nanomaterials in cementitious composites: An update. Molecules, 26(5), 1430. https://doi.org/10.3390/molecules26051430
  • Mohr, B. J., Premenko, L., Nanko, H., Kurtis, K. E. (2005). Examination of wood-derived powders and fibers for internal curing of cement-based materials. Proceedings of the 4th Interntational Seminar: Self-Desiccation and Its Importance in Concrete Technology, Seminar held in Lund (pp. 229–244).
  • Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941–3994. https://doi.org/10.1039/c0cs00108b
  • Nafees, A., Javed, M. F., Khan, S., Nazir, K., Farooq, F., Aslam, F., Musarat, M. A., & Vatin, N. I. (2021). Predictive modeling of mechanical properties of silica fume based green concrete using artificial intelligence approaches: MLPNN, ANFIS, and GEP. Materials, 14(2021), 7531. https://doi.org/10.3390/ma14247531
  • Nechyporchuk, O., Belgacem, M. N., & Bras, J. (2016). Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 93, 2–25. https://doi.org/10.1016/j.indcrop.2016.02.016
  • Oh, J. A., Aakyiir, M., Liu, Y., Qiu, A., Meola, T. R., Forson, P., Araby, S., Zhuge, Y., Lee, S.-H., & Ma, J. (2022). Durable cement/cellulose nanofiber composites prepared by a facile approach. Cement and Concrete Composites, 125, 104321. https://doi.org/10.1016/j.cemconcomp.2021.104321
  • Onuaguluchi, O., & Banthia, N. (2016). Plant-based natural fibre reinforced cement composites: A review. Cement and Concrete Composites, 68, 96–108. https://doi.org/10.1016/j.cemconcomp.2016.02.014
  • Onuaguluchi, O., Panesar, D. K., & Sain, M. (2014). Properties of nanofibre reinforced cement composites. Construction and Building Materials, 63, 119–124. https://doi.org/10.1016/j.conbuildmat.2014.04.072
  • Öztaş, A., Pala, M., Özbay, E., Kanca, E., Çagˇlar, N., & Bhatti, M. A. (2006). Predicting the compressive strength and slump of high strength concrete using neural network. Construction and Building Materials, 20(9), 769–775. https://doi.org/10.1016/j.conbuildmat.2005.01.054
  • Paul, S. C., Van Rooyen, A. S., van Zijl, G. P., & Petrik, L. F. (2018). Properties of cement-based composites using nanoparticles: A comprehensive review. Construction and Building Materials, 189, 1019–1034. https://doi.org/10.1016/j.conbuildmat.2018.09.062
  • Peters, S. J., Rushing, T. S., Landis, E. N., & Cummins, T. K. (2010). Nanocellulose and microcellulose fibers for concrete. Transportation Research Record, 2142(1), 25–28. https://doi.org/10.3141/2142-04
  • Pham, V. N., Do, H. D., Oh, E., & Ong, D. E. (2021). Prediction of unconfined compressive strength of cement-stabilized sandy soil in Vietnam using artificial neural networks (ANNs) model. International Journal of Geotechnical Engineering, 15(9), 1177–1187. https://doi.org/10.1080/19386362.2020.1862539
  • Poon, C. S., Shui, Z. H., & Lam, L. (2004). Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Construction and Building Materials, 18(6), 461–468. https://doi.org/10.1016/j.conbuildmat.2004.03.005
  • Reixach, R., Claramunt, J., Chamorro, M. À., Llorens, J., Pareta, M. M., Tarrés, Q., Mutjé, P., & Delgado-Aguilar, M. (2019). On the path to a new generation of cement-based composites through the use of lignocellulosic micro/nanofibers. Materials, 12(10), 1584. https://doi.org/10.3390/ma12101584
  • Santos, R. F., Ribeiro, J. C. L., de Carvalho, J. M. F., Magalhães, W. L. E., Pedroti, L. G., Nalon, G. H., & de Lima, G. E. S. (2021). Nanofibrillated cellulose and its applications in cement-based composites: A review. Construction and Building Materials, 288, 123122. https://doi.org/10.1016/j.conbuildmat.2021.123122
  • Shahmansouri, A. A., Yazdani, M., Ghanbari, S., Bengar, H. A., Jafari, A., & Ghatte, H. F. (2021). Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. Journal of Cleaner Production, 279, 123697. https://doi.org/10.1016/j.jclepro.2020.123697
  • Silva, P. F., Moita, G. F., & Arruda, V. F. (2020). Machine learning techniques to predict the compressive strength of concrete. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 36(4). https://doi.org/10.23967/j.rimni.2020.09.008
  • Sobhani, J., Najimi, M., Pourkhorshidi, A. R., & Parhizkar, T. (2010). Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models. Construction and Building Materials, 24(5), 709–718. https://doi.org/10.1016/j.conbuildmat.2009.10.037
  • Sun, X., Wu, Q., Lee, S., Qing, Y., & Wu, Y. (2016). Cellulose nanofibers as a modifier for rheology, curing and mechanical performance of oil well cement. Scientific Reports, 6(1), 1–9. https://doi.org/10.1038/srep31654
  • Supit, S. W., & Nishiwaki, T. (2019). Compressive and flexural strength behavior of ultra-high performance mortar reinforced with cellulose nano-fibers. International Journal on Advanced Science, Engineering and Information Technology, 9(1), 365–372. https://doi.org/10.18517/ijaseit.9.1.7506
  • Taheri, H., Mastali, M., Falah, M., Abdollahnejad, Z., Ghiassi, B., Perrot, A., & Kawashima, S. (2022). Microfibrillated cellulose as a new approach to develop lightweight cementitious composites: Rheological, mechanical, and microstructure perspectives. Construction and Building Materials, 342, 128008. https://doi.org/10.1016/j.conbuildmat.2022.128008
  • Takasi, P. (2019). P.A laboratory investigation of cement based materials with cellulose nanofibers. Doctor of Philosophy, The University of Maine.
  • Tang, Z., Huang, R., Mei, C., Sun, X., Zhou, D., Zhang, X., & Wu, Q. (2019). Influence of cellulose nanoparticles on rheological behavior of oil well cement-water slurries. Materials, 12(2), 291. https://doi.org/10.3390/ma12020291
  • Trache, D., Hussin, M. H., Haafiz, M. M., & Thakur, V. K. (2017). Recent progress in cellulose nanocrystals: Sources and production. Nanoscale, 9(5), 1763–1786. https://doi.org/10.1039/C6NR09494E
  • Yang, K. H., Jung, Y. B., Cho, M. S., & Tae, S. H. (2015). Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. Journal of Cleaner Production, 103, 774–783. https://doi.org/10.1016/j.jclepro.2014.03.018
  • Yu, J., Zhang, M., Li, G., Meng, J., & Leung, C. K. (2020). Using nano-silica to improve mechanical and fracture properties of fiber-reinforced high-volume fly ash cement mortar. Construction and Building Materials, 239, 117853. https://doi.org/10.1016/j.conbuildmat.2019.117853
  • Zhang, Z., & Scherer, G. W. (2020). Measuring chemical shrinkage of ordinary Portland cement pastes with high water-to-cement ratios by adding cellulose nanofibrils. Cement and Concrete Composites, 111, 103625. https://doi.org/10.1016/j.cemconcomp.2020.103625