936
Views
1
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Synergetic effect of incorporating graphene, CNT and hybrid nanoparticles on the mechanical properties of glass fiber reinforced epoxy laminated composites

, , &
Article: 2232604 | Received 14 Sep 2022, Accepted 29 Jun 2023, Published online: 05 Jul 2023

References

  • ASTM D2240-15. (2021). Standard test method for rubber property—Durometer hardness. https://doi.org/10.1520/D2240-15R21.
  • ASTM D2734-94. (1994). Standard test methods for void content of reinforced plastics.
  • ASTM D570-98. (2018). Standard test method for water absorption of plastics. https://doi.org/10.1520/D0570-98R18.
  • ASTM D790. (1997). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials.
  • Chiang, C. L., Chou, H. Y., & Shen, M. Y. (2020). Effect of environmental aging on mechanical properties of graphene nanoplatelet/nanocarbon aerogel hybrid-reinforced epoxy/carbon fiber composite laminates. Composites Part A, Applied Science and Manufacturing, 130, 105718. https://doi.org/10.1016/j.compositesa.2019.105718
  • Civalek, Ö., Dastjerdi, S., & Akgöz, B. (2020). Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates. Mechanics Based Design of Structures and Machines, 50(6), 1914–16. https://doi.org/10.1080/15397734.2020.1766494
  • Eslami-Farsani, R., Aghamohammadi, H., Khalili, S. M. R., Ebrahimnezhad Khaljiri, H., & Jalali, H. (2022). Recent trend in developing advanced fiber metal laminates reinforced with nanoparticles: A review study. Journal of Industrial Textiles, 51(5_suppl), 7374S–7408S. https://doi.org/10.1177/1528083720947106
  • Jen, Y. M., Huang, J. C., & Zheng, K. Y. (2020). Synergistic effect of multi-walled carbon nanotubes and graphene nanoplatelets on the monotonic and fatigue properties of uncracked and cracked epoxy composites. Polymers (Basel), 12(9), 1895. https://doi.org/10.3390/POLYM12091895
  • Kamaraj, M., Dodson, E. A., & Datta, S. (2020). Effect of graphene on the properties of flax fabric reinforced epoxy composites. Advanced Composite Materials, 29(5), 443–458. https://doi.org/10.1080/09243046.2019.1709679
  • Kassa, M. K., & Arumugam, A. B. (2020). Micromechanical modeling and characterization of elastic behavior of carbon nanotube‐reinforced polymer nanocomposites: A combined numerical approach and experimental verification. Polymer Composites, 41(8), 3322–3339. https://doi.org/10.1002/pc.25622
  • Kassa, M. K., Arumugam, A. B., & Rana, T. (2020). Three-phase modelling and characterization of elastic behavior of MWCNT reinforced GFRP composites: A combined numerical and experimental study. Materials Today: Proceedings, 26, 944–949. https://doi.org/10.1016/j.matpr.2020.01.152
  • Kassa, M. K., Selvaraj, R., Wube, H. D., & Arumugam, A. B. (2021a). Investigation of the bending response of carbon nanotubes reinforced laminated tapered spherical composite panels with the influence of waviness, interphase and agglomeration. Mechanics Based Design of Structures and Machines, 1–23. https://doi.org/10.1080/15397734.2021.2017966/
  • Kassa, M. K., Selvaraj, R., Wube, H. D., & Arumugam, A. B. (2021b). Investigation of the bending response of carbon nanotubes reinforced laminated tapered spherical composite panels with the influence of waviness, interphase and agglomeration. Mechanics Based Design of Structures and Machines, 1–23. https://doi.org/10.1080/15397734.2021.2017966
  • Kassa, M. K., Singh, L. K., & Arumugam, A. B. (2022). Numerical and experimental investigation of first ply failure response of multi-walled carbon nanotubes/epoxy/glass fiber hybrid laminated tapered curved composite panels. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(15), 8481–8496. https://doi.org/10.1177/09544062221085896
  • Kebede Kassa, M., Arumugam, A. B., and Singh, B. (2020). Prediction of thermo-mechanical properties of MWCNT-Reinforced GFRP and its thermo-elastic response analysis in laminated composite plate. In Proceedings of International Conference in Mechanical and Energy Technology, (pp. 285–296).
  • Kebede Kassa, M., & Babu Arumugam, A. (2022, February). Bending response analysis of a laminated, tapered, curved, composite panel made from an agglomerated and wavy MWCNT–glass fiber–polymer hybrid. Transactions of the Canadian Society for Mechanical Engineering, 46(1), 103–131. https://doi.org/10.1139/tcsme-2021-0084
  • Keshavarz, R., Aghamohammadi, H., & Eslami-Farsani, R. (2020). The effect of graphene nanoplatelets on the flexural properties of fiber metal laminates under marine environmental conditions. International Journal of Adhesion and Adhesives, 103, 102709. https://doi.org/10.1016/j.ijadhadh.2020.102709
  • Kilikevičius, S., Kvietkaitė, S., Mishnaevsky, L., Omastová, M., Aniskevich, A., & Zeleniakienė, D. (2021, April). Novel hybrid polymer composites with graphene and mxene nano-reinforcements: Computational analysis. Polymers (Basel), 13(7), 1013. https://doi.org/10.3390/polym13071013
  • Kishore, M., Amrita, M., and Kamesh, B. (2020a). Experimental investigation of milling on basalt-jute hybrid composites with graphene as nanofiller. In Materials today: Proceedings, 43, 726–730. https://doi.org/10.1016/j.matpr.2020.12.847.
  • Kishore, M., Amrita, M., and Kamesh, B. (2020b). Tribological properties of basalt-jute hybrid composite with graphene as nanofiller. In Materials today: Proceedings, (Vol 43, pp. 244–249). https://doi.org/10.1016/j.matpr.2020.11.654.
  • Lila, M. K., Verma, A., & Bhurat, S. S. (2022). Impact behaviors of epoxy/synthetic fiber composites. In Handbook of epoxy/fiber composites (pp. 1–18). Springer Singapore. https://doi.org/10.1007/978-981-15-8141-0_55-1
  • Liu, J., Fu, J., Ni, T., & Yang, Y. (2019). Fracture toughness improvement of multi-wall carbon nanotubes/graphene sheets reinforced cement paste. Construction and Building Materials, 200, 530–538. https://doi.org/10.1016/j.conbuildmat.2018.12.141
  • Mahmood, H., Vanzetti, L., Bersani, M., & Pegoretti, A. (2018). Mechanical properties and strain monitoring of glass-epoxy composites with graphene-coated fibers. Composites Part A, Applied Science and Manufacturing, 107, 112–123. https://doi.org/10.1016/j.compositesa.2017.12.023
  • Mallick, P. K. (2007). Fiber-reinforced composites: materials, manufacturing, and design. CRC press.
  • Navidfar, A., & Trabzon, L. (2019). Graphene type dependence of carbon nanotubes/graphene nanoplatelets polyurethane hybrid nanocomposites: Micromechanical modeling and mechanical properties. Composites Part B: Engineering, 176(July), 107337. https://doi.org/10.1016/j.compositesb.2019.107337
  • Qin, W., Chen, C., Zhou, J., & Meng, J. (2020). Synergistic effects of graphene/carbon nanotubes hybrid coating on the interfacial and mechanical properties of fiber composites. Materials (Basel), 13(6), 1457. https://doi.org/10.3390/ma13061457
  • Qing, Y., Jie, W., Wang, H., Fa, L., & Zhou, W. (2016). Graphene nanosheets/E-glass/epoxy composites with enhanced mechanical and electromagnetic performance. RSC Advances, 6(84), 80424–80430. https://doi.org/10.1039/c6ra15116g
  • Rastogi, S., Verma, A., & Singh, V. K. (2020). Experimental response of nonwoven waste cellulose fabric–reinforced epoxy composites for high toughness and coating applications. Materials Performance and Characterization, 9(1), 151–172. https://doi.org/10.1520/MPC20190251
  • Rouway, M., Nachtane, M., Tarfaoui, M., Chakhchaoui, N., Omari, L. E. H., Fraija, F., & Cherkaoui, O. (2021). Mechanical properties of a biocomposite based on carbon nanotube and graphene nanoplatelet reinforced polymers: Analytical and numerical study. Journal of Composites Science, 5(9), 234. https://doi.org/10.3390/JCS5090234
  • Shen, X. J., Meng, L.-X., Yan, Z.-Y., Sun, C.-J., Ji, Y.-H., Xiao, H.-M., & Fu, S.-Y. (2015). Improved cryogenic interlaminar shear strength of glass fabric/epoxy composites by graphene oxide. Composites Part B: Engineering, 73, 126–131. https://doi.org/10.1016/j.compositesb.2014.12.023
  • Singh, L. K., Bhadauria, A., & Laha, T. (2019). Comparing the strengthening efficiency of multiwalled carbon nanotubes and graphene nanoplatelets in aluminum matrix. Powder Technology, 356, 1059–1076. https://doi.org/10.1016/j.powtec.2019.09.026
  • Verma, A., Gaur, A., & Singh, V. K. (2017). Mechanical properties and microstructure of starch and sisal fiber biocomposite modified with epoxy resin. Materials Performance and Characterization, 6(1), 20170069–20170520. https://doi.org/10.1520/MPC20170069
  • Verma, A., Jain, N., & Sethi, S. K. (2022). Modeling and simulation of graphene-based composites. In Innovations in graphene-based polymer composites (pp. 167–198). Elsevier.
  • Verma, A., Joshi, K., Gaur, A., & Singh, V. K. (2018). Starch-jute fiber hybrid biocomposite modified with an epoxy resin coating: Fabrication and experimental characterization. Journal of the Mechanical Behavior of Materials, 27(5–6). https://doi.org/10.1515/jmbm-2018-2006
  • Verma, A., Negi, P., & Singh, V. K. (2018). Physical and thermal characterization of chicken feather fiber and crumb rubber reformed epoxy resin hybrid composite. Advances in Civil Engineering Materials, 7(1), 20180027–20180557. https://doi.org/10.1520/ACEM20180027
  • Verma, A., & Parashar, A. (2017). The effect of STW defects on the mechanical properties and fracture toughness of pristine and hydrogenated graphene. Physical Chemistry Chemical Physics: PCCP, 19(24), 16023–16037. https://doi.org/10.1039/C7CP02366A
  • Verma, A., & Parashar, A. (2018). Structural and chemical insights into thermal transport for strained functionalised graphene: A molecular dynamics study. Materials Research Express, 5(11), 115605. https://doi.org/10.1088/2053-1591/aade36
  • Verma, A., Parashar, A., & Packirisamy, M. (2018). Atomistic modeling of graphene/hexagonal boron nitride polymer nanocomposites: A review. WIREs Computational Molecular Science, 8(3), e1346. https://doi.org/10.1002/wcms.1346
  • Verma, A., Parashar, A., & Packirisamy, M. (2019). Effect of grain boundaries on the interfacial behaviour of graphene-polyethylene nanocomposite. Applied Surface Science, 470, 1085–1092. https://doi.org/10.1016/j.apsusc.2018.11.218
  • Verma, A., Parashar, A., & van Duin, A. C. T. (2022). Graphene-reinforced polymeric membranes for water desalination and gas separation/barrier applications. In Innovations in graphene-based polymer composites (pp. 133–165). Elsevier. https://doi.org/10.1016/B978-0-12-823789-2.00009-1
  • Verma, A., & Singh, V. K. (2018). Mechanical, microstructural and thermal characterization of epoxy-based human hair–reinforced composites. Journal of Testing and Evaluation, 47(2), 1193–1215. https://doi.org/10.1520/JTE20170063
  • Wang, S., Cao, M., Xue, H., Araby, S., Abbassi, F., He, Y., Su, W., & Meng, Q. (2022). Investigation on graphene addition on the quasi-static and dynamic responses of carbon fibre-reinforced metal laminates. Thin-Walled Structures, 174(May), 21–23. https://doi.org/10.1016/j.tws.2022.109092
  • Wang, P. N., Hsieh, T. H., Chiang, C. L., & Shen, M. Y. (2015). Synergetic effects of mechanical properties on graphene nanoplatelet and multiwalled carbon nanotube hybrids reinforced epoxy/carbon fiber composites. Journal of Nanomaterials, 2015, 1–9. https://doi.org/10.1155/2015/838032
  • Zeng, S. H., Shen, M. X., Duan, P. P., Zheng, H. K., & Wang, Z. Y. (2017). Structure and property of carbon nanotubes attached glass fabric reinforced epoxy composites. Cailiao Gongcheng/Journal Materials Engineering, 45(9), 38–44. https://doi.org/10.11868/j.issn.1001-4381.2015.001326
  • Zhang, J., Zhuang, R., Liu, J., Mäder, E., Heinrich, G., & Gao, S. (2010). Functional interphases with multi-walled carbon nanotubes in glass fibre/epoxy composites. Carbon NY, 48(8), 2273–2281. https://doi.org/10.1016/j.carbon.2010.03.001