1,367
Views
1
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

Effect of polypropylene fibres on strength and durability performance of M-sand self compacting concrete

, , &
Article: 2233783 | Received 19 Dec 2022, Accepted 03 Jul 2023, Published online: 10 Jul 2023

References

  • Afroughsabet, V., Biolzi, L., & Monteiro, P. J. M. (2017). The effect of steel and polypropylene fibers on the chloride diffusivity and drying shrinkage of high-strength concrete. Composites Part B: Engineering, 139(November), 84–21. https://doi.org/10.1016/j.compositesb.2017.11.047
  • Ahmadi, M., Kheyroddin, A., & Kioumarsi, M. (2021). Prediction models for bond strength of steel reinforcement with consideration of corrosion. Materials Today: Proceedings, 45, 5829–5834. https://doi.org/10.1016/j.matpr.2021.03.263
  • Ahmed, G. H., Ahmed, H., Ali, B., & Alyousef, R. (2021). Assessment of high performance self-consolidating concrete through an experimental and analytical multi-parameter approach. Materials (Basel), 14(4), 1–22. https://doi.org/10.3390/ma14040985
  • Behfarnia, K., & Farshadfar, O. (2013). The effects of pozzolanic binders and polypropylene fibers on durability of SCC to magnesium sulfate attack. Construction and Building Materials, 38, 64–71. https://doi.org/10.1016/j.conbuildmat.2012.08.035
  • Bhagwat, Y., Nayak, G., Lakshmi, A., & Pandit, P. (2022). Corrosion of reinforcing bar in RCC structures—A review. Lecture Notes in Civil Engineering, 162, 813–826. https://doi.org/10.1007/978-981-16-2826-9_51
  • BIS:1489 (Part 1). (1991). Portland-pozzolana cement-specification. Bureau of Indian Standards.
  • Blazy, J., & Blazy, R. (2021). Polypropylene fiber reinforced concrete and its application in creating architectural forms of public spaces. Case Studies in Construction Materials, 14, e00549. https://doi.org/10.1016/j.cscm.2021.e00549
  • Brue, F. N. G., Davy, C. A., Burlion, N., Skoczylas, F., & Bourbon, X. (2017). Five year drying of high performance concretes: Effect of temperature and cement-type on shrinkage. Cement and Concrete Research, 99(April), 70–85. https://doi.org/10.1016/j.cemconres.2017.04.017
  • Conforti, A., Minelli, F., & Plizzari, G. A. (2017). Shear behaviour of prestressed double tees in self-compacting polypropylene fibre reinforced concrete. Engineering Structures, 146, 93–104. https://doi.org/10.1016/j.engstruct.2017.05.014
  • Das, S., Habibur Rahman Sobuz, M., Tam, V. W. Y., Akid, A. S. M., Sutan, N. M., & Rahman, F. M. M. (2020). Effects of incorporating hybrid fibres on rheological and mechanical properties of fibre reinforced concrete. Construction and Building Materials, 262, 120561. https://doi.org/10.1016/j.conbuildmat.2020.120561
  • EFNARC. (2005). The European guidelines for self-compacting concrete. European Guidelines for Self Compacting Concrete (May), 63. http://www.efnarc.org/pdf/SCCGuidelinesMay2005.pdf
  • El, A., Nehme, S. G., & Assaad, J. J. (2019). Heliyon durability of self-consolidating concrete containing natural waste perlite powders. Heliyon, 6(1), e03165. https://doi.org/10.1016/j.heliyon.2020.e03165
  • Flores Medina, N., Barluenga, G., & Hernández-Olivares, F. (2015). Combined effect of polypropylene fibers and silica fume to improve the durability of concrete with natural pozzolans blended cement. Construction and Building Materials, 96, 556–566. https://doi.org/10.1016/j.conbuildmat.2015.08.050
  • Ginting, A. (2022). Increasing the compressive strength of concrete using PPC. Journal of Physics Conference Series, 2394(1), 0–5. https://doi.org/10.1088/1742-6596/2394/1/012021
  • Gokulnath, V., Ramesh, B., & Suvesha Reddy, S. (2020). Addition of reinforcing materials in self compacting concrete. Materials Today: Proceedings, 22, 722–725. https://doi.org/10.1016/j.matpr.2019.10.013
  • Golewski, G. L. (2022). The role of pozzolanic activity of siliceous fly ash in the formation of the structure of sustainable cementitious composites. Sustainable Chemistry, 3(4), 520–534. https://doi.org/10.3390/suschem3040032
  • Guo, H., Jiang, L., Tao, J., Chen, Y., Zheng, Z., & Jia, B. (2021). Influence of a hybrid combination of steel and polypropylene fibers on concrete toughness. Construction and Building Materials, 275, 122132. https://doi.org/10.1016/j.conbuildmat.2020.122132
  • Hatami Jorbat, M., Hosseini, M., & Mahdikhani, M. (2020). Effect of polypropylene fibers on the mode I, mode II, and mixed-mode fracture toughness and crack propagation in fiber-reinforced concrete. Theoretical and Applied Fracture Mechanics, 109(July), 102723. https://doi.org/10.1016/j.tafmec.2020.102723
  • Hemalatha, T., Ram Sundar, K. R., Murthy, A. R., & Iyer, N. R. (2015). Influence of mixing protocol on fresh and hardened properties of self-compacting concrete. Construction and Building Materials, 98, 119–127. https://doi.org/10.1016/j.conbuildmat.2015.08.072
  • Huang, H., Yuan, Y., Zhang, W., & Zhu, L. (2020). Experimental study on the mechanical properties and the microstructure of hybrid-fiber-reinforced concrete under an early stage. Structural Concrete, 21(3), 1106–1122. https://doi.org/10.1002/suco.201900262
  • Imperatore, S., Vivek D, & Elango KS. (2022). Finite element modelling of reinforced concrete element under corrosion effects. Construction and Building Materials, 14(1), 725–734. https://doi.org/10.1007/978-981-16-8433-3_60
  • IS1199. (2012). Methods of sampling and analysis of concrete. Bureau of Indian Standards. 13–25. https://doi.org/10.2174/18722105130103.
  • IS:383. (1970). Specification for coarse and fine aggregates from natural sources for concrete. Indian Standards. 1–24.
  • IS 456. (2000). Concrete, plain and reinforced. Bureau of Indian Standards. 1–114.
  • IS 516. (1999). Method of tests for strength of concrete. Bureau of Indian Standards. 1–30.
  • Karahan, O., & Atiş, C. D. (2011). The durability properties of polypropylene fiber reinforced fly ash concrete. Materials & Design, 32(2), 1044–1049. https://doi.org/10.1016/j.matdes.2010.07.011
  • Karimipour, A., Ghalehnovi, M., de Brito, J., & Attari, M. (2019). The effect of polypropylene fibres on the compressive strength, impact and heat resistance of self-compacting concrete. Structures, 25(December), 72–87. https://doi.org/10.1016/j.istruc.2020.02.022
  • Kumar Gangaram Singh, M., & Kizhakkumodom Venkatanarayanan, H. (2020). Performance of self-consolidating high-strength mortars developed from Portland pozzolana cement for precast applications. Journal of Materials in Civil Engineering, 32(3). https://doi.org/10.1061/(asce)mt.1943-5533.0003041
  • Kwon, S. J., Lee, H. S., Karthick, S., Saraswathy, V., & Yang, H. M. (2017). Long-term corrosion performance of blended cement concrete in the marine environment – a real-time study. Construction and Building Materials, 154, 349–360. https://doi.org/10.1016/j.conbuildmat.2017.07.237
  • Lakshmi, A., Pandit, P., Bhagwat, Y., & Nayak, G. (2022). A review on efficiency of polypropylene fiber-reinforced concrete. Lecture Notes in Civil Engineering, 162, 799–812. https://doi.org/10.1007/978-981-16-2826-9_50
  • Leung, H. Y., Kim, J., Nadeem, A., Jaganathan, J., & Anwar, M. P. (2016). Sorptivity of self-compacting concrete containing fly ash and silica fume. Construction and Building Materials, 113, 369–375. https://doi.org/10.1016/j.conbuildmat.2016.03.071
  • Li, J. J., Niu, J. G., Wan, C. J., Jin, B., & Yin, Y. L. (2016). Investigation on mechanical properties and microstructure of high performance polypropylene fiber reinforced lightweight aggregate concrete. Construction and Building Materials, 118, 27–35. https://doi.org/10.1016/j.conbuildmat.2016.04.116
  • Liu, F., Ding, W., & Qiao, Y. (2019). An experimental investigation on the integral waterproofing capacity of polypropylene fiber concrete with fly ash and slag powder. Construction and Building Materials, 212, 675–686. https://doi.org/10.1016/j.conbuildmat.2019.04.027
  • Liu, Y., Wang, L., Cao, K., Sun, L., & Aguiar, J. (2021). Review on the durability of polypropylene fibre-reinforced concrete. Advances in Civil Engineering, 2021, 1–13. https://doi.org/10.1155/2021/6652077
  • Mac, M. J., Yio, M. H. N., Wong, H. S., & Buenfeld, N. R. (2021). Analysis of autogenous shrinkage-induced microcracks in concrete from 3D images. Cement and Concrete Research, 144(January), 106416. https://doi.org/10.1016/j.cemconres.2021.106416
  • Mardani-Aghabaglou, A., Özen, S., & Altun, M. G. (2018). Durability performance and dimensional stability of polypropylene fiber reinforced concrete. Journal of Green Building, 13(2), 20–41. https://doi.org/10.3992/1943-4618.13.2.20
  • Mastali, M., & Dalvand, A. (2017). Fresh and hardened properties of self-compacting concrete reinforced with hybrid recycled steel–polypropylene fiber. Journal of Materials in Civil Engineering, 29(6), 1–15. https://doi.org/10.1061/(asce)mt.1943-5533.0001851
  • Mehta, P. K. (1983). Mechanism of sulfate attack on Portland cement concrete — Another look. Cement and Concrete Research, 13(3), 401–406. https://doi.org/10.1016/0008-8846(83)90040-6
  • Meyer, D. M., & Combrinck, R. (2021). Utilising microCT scanning technology as a method for testing and analysing plastic shrinkage cracks in concrete. Construction and Building Materials, 317(November), 125895. https://doi.org/10.1016/j.conbuildmat.2021.125895
  • Monazami, M., & Gupta, R. (2021). Influence of polypropylene, carbon and hybrid coated fiber on the interfacial microstructure development of cementitious composites. Fibers, 9(11). https://doi.org/10.3390/fib9110065
  • Monteiro, P. J. M., Miller, S. A., & Horvath, A. (2017). Towards sustainable concrete. Nature Materials, 16(7), 698–699. https://doi.org/10.1038/nmat4930
  • Nasir, M., Baghabra Al-Amoudi, O. S., & Maslehuddin, M. (2017). Effect of placement temperature and curing method on plastic shrinkage of plain and pozzolanic cement concretes under hot weather. Construction and Building Materials, 152, 943–953. https://doi.org/10.1016/j.conbuildmat.2017.07.068
  • Okamura, H., & Ozawa, K. (1996). Self-compacting high performance concrete. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering, 6(4), 269–270. https://doi.org/10.2749/101686696780496292
  • Ouchi, M., Hibino, M., & Okamura, H. (1996). Effect of superplasticizer on self-compactability of fresh concrete. Transportation Research Record: Journal of the Transportation Research Board, 1574(1), 37–40. https://doi.org/10.3141/1574-05
  • Prakash, R., Raman, S. N., Divyah, N., Subramanian, C., Vijayaprabha, C., & Praveenkumar, S. (2021). Fresh and mechanical characteristics of Roselle fibre reinforced self-compacting concrete incorporating fly ash and metakaolin. Construction and Building Materials, 290, 123209. https://doi.org/10.1016/j.conbuildmat.2021.123209
  • Prakash, R., Thenmozhi, R., Raman, S. N., & Subramanian, C. (2020). Fibre reinforced concrete containing waste coconut shell aggregate, fly ash and polypropylene fibre. Revista Facultad de Ingeniería Universidad de Antioquia, (94), 33–42. https://doi.org/10.17533/10.17533/udea.redin.20190403
  • Prakash, R., Thenmozhi, R., Raman, S. N., Subramanian, C., & Divyah, N. (2021). An investigation of key mechanical and durability properties of coconut shell concrete with partial replacement of fly ash. Structural Concrete, 22(S1), E985–E996. https://doi.org/10.1002/suco.201900162
  • Rajesh Kumar, K., Shyamala, G., & Adesina, A. (2021). Structural performance of corroded reinforced concrete beams made with fiber-reinforced self-compacting concrete. Structures, 32(March), 1145–1155. https://doi.org/10.1016/j.istruc.2021.03.079
  • Ramezanianpour, A. A., Esmaeili, M., Ghahari, S. A., & Najafi, M. H. (2013). Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers. Construction and Building Materials, 44, 411–418. https://doi.org/10.1016/j.conbuildmat.2013.02.076
  • Rossi, E., Polder, R., Copuroglu, O., Nijland, T., & Šavija, B. (2020). The influence of defects at the steel/concrete interface for chloride-induced pitting corrosion of naturally-deteriorated 20-years-old specimens studied through X-ray Computed Tomography. Construction and Building Materials, 235, 117474. https://doi.org/10.1016/j.conbuildmat.2019.117474
  • Sadiqul Islam, G. M., & Das Gupta, S. (2016). Evaluating plastic shrinkage and permeability of polypropylene fiber reinforced concrete. International Journal of Sustainable Built Environment, 5(2), 345–354. https://doi.org/10.1016/j.ijsbe.2016.05.007
  • Sangoju, B., Gettu, R., Bharatkumar, B. H., & Neelamegam, M. (2011). Chloride-induced corrosion of steel in cracked OPC and PPC concretes: Experimental study. Journal of Materials in Civil Engineering, 23(7), 1057–1066. https://doi.org/10.1061/(asce)mt.1943-5533.0000260
  • Sangoju, B., Pillai, R. G., Gettu, R., Bharatkumar, B. H., & Iyer, N. R. (2015). Use of Portland pozzolana cement to enhance the service life of reinforced concrete exposed to chloride attack. Journal of Materials in Civil Engineering, 27(11), 04015031. https://doi.org/10.1061/(asce)mt.1943-5533.0001293
  • Šavija, B., Luković, M., Hosseini, S. A. S., Pacheco, J., & Schlangen, E. (2015). Corrosion induced cover cracking studied by X-ray computed tomography, nanoindentation, and energy dispersive X-ray spectrometry (EDS). Materials and Structures/Materiaux et Constructions, 48(7), 2043–2062. https://doi.org/10.1617/s11527-014-0292-9
  • Siddique, R. (2011). Properties of self-compacting concrete containing class F fly ash. Materials & Design, 32(3), 1501–1507. https://doi.org/10.1016/j.matdes.2010.08.043
  • Sun, M., Bennett, T., & Visintin, P. (2022). Dataset on plastic and early-age shrinkage of ultra-high performance concrete with corresponding chemical shrinkage, temperature, relative humidity, reaction degree and material properties changes. Data : Best Regards, 42, 108053. https://doi.org/10.1016/j.dib.2022.108053
  • Szeląg, M. (2018). Evaluation of cracking patterns of cement paste containing polypropylene fibers. Composite Structures, 220(November), 402–411. https://doi.org/10.1016/j.compstruct.2019.04.038
  • Usman Rashid, M. (2020). Experimental investigation on durability characteristics of steel and polypropylene fiber reinforced concrete exposed to natural weathering action. Construction and Building Materials, 250, 118910. https://doi.org/10.1016/j.conbuildmat.2020.118910
  • Wang, L., Yi, J., Zhang, J., Jiang, Y., & Zhang, X. (2017). Effect of corrosion-induced crack on the bond between strand and concrete. Construction and Building Materials, 153, 598–606. https://doi.org/10.1016/j.conbuildmat.2017.07.113
  • Wang, W., Zhu, J., Cheng, X., Liu, S., Jiang, D., & Wang, W. (2022). Numerical simulation of strength of basalt fiber permeable concrete based on CT technology. Case Studies in Construction Materials, 17(May), e01348. https://doi.org/10.1016/j.cscm.2022.e01348
  • Yuan, Z., & Jia, Y. (2021). Mechanical properties and microstructure of glass fiber and polypropylene fiber reinforced concrete: An experimental study. Construction and Building Materials, 266, 121048. https://doi.org/10.1016/j.conbuildmat.2020.121048
  • Zhang, P., & Li, Q. F. (2013). Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume. Composites Part B Engineering, 45(1), 1587–1594. https://doi.org/10.1016/j.compositesb.2012.10.006
  • Zhou, Y., Du, H., Liu, Y., Liu, J., & Liang, S. (2022). An experimental study on mechanical, shrinkage and creep properties of early-age concrete affected by clay content on coarse aggregate. Case Studies in Construction Materials, 16(April), e01135. https://doi.org/10.1016/j.cscm.2022.e01135