1,911
Views
1
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

Mechanical properties of concrete using different types of recycled plastic as an aggregate replacement

, ORCID Icon, &
Article: 2243735 | Received 01 Apr 2023, Accepted 29 Jul 2023, Published online: 02 Aug 2023

References

  • Adibi, M., Mohammadi, M., Karimi, H., & Cacciola, P. (2020). Evaluation of mechanical behaviour of the rubberized PCC mortar in fixed W/C ratio. Cogent Engineering, 7(1), 1831125. https://doi.org/10.1080/23311916.2020.1831125
  • Al-Darzi, S. Y. K. (2007). Effects of concrete nonlinear modeling on the analysis of push-out test by finite element method. Journal of Applied Science, Asian Network for Scientific Information, Pakistan, 7(5), 743–21. https://doi.org/10.3923/jas.2007.743.747
  • Almeshal, I., Tayeh, B. A., Alyousef, R., Alabduljabbar, H., & Mohamed, A. M. (2020). Eco-friendly concrete containing recycled plastic as partial replacement for sand. Journal of Materials Research and Technology, 9(3), 4631–4643. https://doi.org/10.1016/j.jmrt.2020.02.090
  • Asghar, R., Khan, M. A., Alyousef, R., Javed, M. F., & Ali, M. (2023). Promoting the green Construction: Scientometric review on the mechanical and structural performance of geopolymer concrete. Construction and Building Materials, 368, 130502. https://doi.org/10.1016/j.conbuildmat.2023.130502
  • ASTM C143/C143M–03. (2003). Standard test method for slump of hydraulic-cement concrete, ASTM International, West Conshohocken, PA 19428-2959. ASTM International.
  • ASTM C1602/C1602M–06. (2006). Standard specification for mixing water used in the production of hydraulic cement concrete. ASTM International. 19428-2959, United States, PP4.
  • ASTM C192/C192M–02. (2002) . Standard practice for making and curing concrete test specimens in the laboratory, ASTM International, West Conshohocken, PA 19428-2959. United States.
  • ASTM C29/C29M-97. (1997) . Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate, ASTM International, West Conshohocken, PA 19428-2959. United States.
  • ASTM C39/C39M–03. (2003). Standard Test method for compressive strength of cylindrical concrete specimens, ASTM International, West Conshohocken, PA 19428-2959. ASTM International.
  • ASTM C469–02. (2002). Standard test method for static modulus of elasticity and poisson’s ratio of concrete in compression, ASTM International, West Conshohocken, PA 19428-2959. ASTM International.
  • ASTM C496/C496M–04. (2004). Standard test method for splitting tensile strength of cylindrical concrete specimens. ASTM International. 19428-2959, United States, PP5.
  • ASTM C78–02. (2002). Standard test method for flexural strength of concrete (Using Simple Beam with Third-Point Loading). ASTM International.
  • Babatunde, Y. O., Mwero, J., Mutuku, R., Jimoh, Y., & Oguntayo, D. (2022). Effects of filler types on the microstructural and engineering properties of waste plastic binder composite for construction purposes. Cogent Engineering, 9(1), 2143057. https://doi.org/10.1080/23311916.2022.2143057
  • Bach, C., Dauchy, X., Chagnon, M. C., & Etienne, S. (2012). Chemical compounds and toxicological assessments of drinking water stored in polyethylene terephthalate (PET) bottles: A source of controversy reviewed. Journal of Water Research, 46(3), 571–583. https://doi.org/10.1016/j.watres.2011.11.062
  • Batayneh, M., Marie, I., & Asi, I. (2007). Use of selected waste materials in concrete mixes. Waste Management, 27(2007), 1870–1876. https://doi.org/10.1016/j.wasman.2006.07.026
  • Chen, S. H., Wang, H. Y., & Jhou, J. W. (2013). Investigating the properties of lightweight concrete containing high contents of recycled green building materials. Journal of Construction and Building Materials, 48, 98–103. https://doi.org/10.1016/j.conbuildmat.2013.06.040
  • Colangelo, F., Cioffi, R., Liguori, B., & Lucolano, F. (2016). Recycled polyolefins waste as aggregates for lightweight concrete. Journal of Composites Part B: Engineering, 106, 234–241. https://doi.org/10.1016/j.compositesb.2016.09.041
  • Dawood, A. O., Hayder, A. K., & Falih, R. S. (2021). Physical and mechanical properties of concrete containing PET wastes as a partial replacement for fine aggregates. Case Studies in Construction Materials, 14, e00482. https://doi.org/10.1016/j.cscm.2020.e00482
  • Foti, D. (2011). Preliminary analysis of concrete reinforced with waste bottles PET fibers. Construction and Building Materials, 25(4), 1906–1915. https://doi.org/10.1016/j.conbuildmat.2010.11.066
  • Frigione, M. (2010). Recycling of PET bottles as fine aggregate in concrete. Journal of Waste Management, 30(6), 1101–1106. https://doi.org/10.1016/j.wasman.2010.01.030
  • Hognested, E. A. (1951). A study of combined bending and axial load in reinforced concrete members, eng, exp. In Station, Bull. No. 399 Vol. 49, (p. 22). University of Illinois. https://hdl.handle.net/2142/4360
  • Hsie, M., Tua, C., & Song, P. S. (2008). Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Materials Science and Engineering, 494(1–2), 153–157. https://doi.org/10.1016/j.msea.2008.05.037
  • Iftikhar, B., Alih, S. C., Vafaei, M., Alrowais, R., Bashir, M. T., Khalil, A., Rizwan, M., Javed, M. F., Rehman, M. F., & Mohamed, A. (2023 Mar 11). A scientometric analysis approach on the plastic sand. Heliyon, 9(3), e14457. https://doi.org/10.1016/j.heliyon.2023.e14457
  • Iraqi Specification IQS. 45/1984. (2016, 17). Aggregate from natural sources for concrete and construction, modified at 2016. National Central Structural Laboratory.
  • Iraqi Specifications, IQS. 5/1984. (2016). Properties of Normal Portland Cement. National Central Structural Laboratory, 1984.
  • Islam, M. J. (2022). Comparative study of concrete with polypropylene and polyethylene terephthalate waste plastic as partial replacement of coarse aggregate. Advances in Civil Engineering, 2022(2022), 1–13. https://doi.org/10.1155/2022/4928065
  • Javed, M. F., Durrani, A. A., Kashif Ur Rehman, S., Aslam, F., Alabduljabbar, H., & Mosavi, A. (2021). Effect of recycled coarse aggregate and bagasse ash on two-stage concrete. Crystals, 11(5), 556. https://doi.org/10.3390/cryst11050556
  • Juki, M. I., Awang, M., Annas, M. M. K., Boon, K. H., Othman, N., Binti Abdul Kadir, A., Roslan, M. A., & Khalid, F. S. (2013). Relationship between compressive, splitting tensile and flexural strength of concrete containing granulated waste polyethylene terephthalate (PET) bottles as fine aggregate. AMR, 795, 356–359. https://doi.org/10.4028/www.scientific.net/amr.795.356
  • Kangavar, M. E., Lokuge, W., Manalo, A., Karunasena, W., & Frigione, M. (2022). Investigation on the properties of concrete with recycled polyethylene terephthalate (PET) Granules as Fine Aggregate Replacement. Case Studies in Construction Materials, 16(2022), e00934. https://doi.org/10.1016/j.cscm.2022.e00934
  • Khalid, F. S., Irwan, J. M., Wan Ibrahim, M. H., Othman, N., & Shahidan, S. (2018). Performance of plastic wastes in fiber-reinforced concrete beams. Construction and Building Materials, 183(2018), 451–464. https://doi.org/10.1016/j.conbuildmat.2018.06.122
  • Li, X., Ling, T. C., & Mo, K. H. (2020). Functions and Impacts of Plastic/Rubber Wastes as eco-friendly Aggregate in Concrete – a Review. Journal of Construction and Building Materials, 240(2020), 117869. https://doi.org/10.1016/j.conbuildmat.2019.117869
  • Li, J. J., Niu, J. G., Wan, C. J., Jin, B., & Yin, Y. L. (2016). Investigation on mechanical properties and microstructure of high performance polypropylene fiber reinforced lightweight aggregate concrete. Construction and Building Materials, 118(2016), 27–35. https://doi.org/10.1016/j.conbuildmat.2016.04.116
  • Lucolano, F., Liguori, B., Caputo, D., Colangelo, F., & Cioffi, R. (2013). Recycled plastic aggregate in mortars composition: effect on physical and mechanical properties. Journal of Materials and Design, 52, 916–922. https://doi.org/10.1016/j.matdes.2013.06.025
  • Madenci, E., & Guven, I. (2006). The finite element method and applications in engineering using ANSYS. Springer Science-Business.
  • Moaveni, S. (1999). Finite element analysis theory and application with ANSYS. Prentice Hall Inc.
  • Mohammed, A. A. (2017). Flexural behavior and analysis of reinforced concrete beams made of recycled PET waste concrete. Construction and Building Materials, 155(2017), 593–604. https://doi.org/10.1016/j.conbuildmat.2017.08.096
  • Neville, A. M. (2004). Properties of Concrete (4th ed.). Pearson Prentice Hall.
  • Rabar, H. F., Aryan, F. H. S., & Ako, D. (2019). Mechanical, fracture and durability properties of self-compacting high strength concrete containing recycled polypropylene plastic particles. Journal of Building Engineering, S2352-7102(19), 30212–30218. https://doi.org/10.1016/j.jobe.2019.100808
  • Rabar, H. F., Aryan, F. H. S., Lamyaa, H. J., & Dalya, F. I. (2021). Rheological behavior and fresh properties of self-compacting high strength concrete containing recycled PP particles with fly ash and silica fume blended. Journal of Building Engineering, S2352-7102(19). https://doi.org/10.1016/j.jobe.2020.101667
  • Rabar, H. F., Hunar, F. H. A., Aryan, F. H. S., Bedar, R. H., & Hogr, K. (2019). Use of recycled plastic in self-compacting concrete: A comprehensive review on fresh and mechanical properties. Journal of Building Engineering, S2352-7102(19). https://doi.org/10.1016/j.jobe.2020.101283
  • Radhi, M. M., Khalil, W. I., & Shafeeq, S. (2022). Flexural behavior of sustainable reinforced concrete beams containing HDPE plastic waste as coarse aggregate. Cogent Engineering, 9(1), 2127470. https://doi.org/10.1080/23311916.2022.2127470
  • Torgal, F. P., Ding, Y., & Jalali, S. (2012). Properties and durability of concrete containing polymeric wastes (tyre rubber and polyethylene terephthalate bottles): An Overview. Journal of Construction and Building Materials, 30, 714–724. https://doi.org/10.1016/j.conbuildmat.2011.11.047
  • Yin, S., Tuladhar, R., Shi, F., Combe, M., Collister, T., & Sivakugan, N. (2015). Use of macro plastic fibres in concrete: A Review. Construction and Building Materials, 93(2015), 180–188. https://doi.org/10.1016/j.conbuildmat.2015.05.105