513
Views
0
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Experimental validation of a reconfigurable guillotine shear and bending press machine

ORCID Icon, , &
Article: 2248743 | Received 19 May 2023, Accepted 13 Aug 2023, Published online: 21 Aug 2023

References

  • Abdi, M. R. (2009). Fuzzy multi-criteria decision model for evaluating reconfigurable machines. International Journal of Production Economics, 117(1), 1–18. https://doi.org/10.1016/j.ijpe.2008.06.009
  • Adeodu, A. O., Daniyan, I. A., Adewumi, F. D., Ogwara, G., & Adewale, M. (2022). Effects of nanoclay on the tensile strength and microstructure of tigernut fibre- epoxy composites (NFPCs). Key Engineering Materials, 917, 3–9. https://doi.org/10.4028/p-87w95f
  • Adeodu, A. O., Daniyan, I. A., Akokhia, A.-W., A., & Adelowo, O. (2020). Effects of graphene nanoplatelets dispersion on the enhancement of tensile strength, thermal and electrical conductivity of polymer nano-composites. Proceedings of the American Society for Composites - 35th Technical Conference, ASC (pp. 1319–1334).
  • Al-Zaher, A. (2013). Cost-effective design of automotive framing systems using flexibility and reconfigurability principles, electronic theses and dissertations [PhD Thesis]. Department of Industrial and Manufacturing Systems Engineering, University of Windsor, Windsor, Ontario, Canada.
  • Andersson, A. (2007). Numerical and experimental evaluation of springback in advanced high strength steel. Journal of Materials Engineering and Performance, 16(3), 301–307. https://doi.org/10.1007/s11665-007-9056-9
  • Ashraf, M., & Hasan, F. (2015). Product family formation based on multiple product similarities for a reconfigurable manufacturing system. International Journal of Modelling in Operations Management, 5(3–4), 247–265. https://doi.org/10.1504/IJMOM.2015.075800
  • Bakhshivash, S., Sadeghi, B. M., Rahimi, F., & Haghshenas, M. (2016). Effect of bending angle and punch tip radius on spring-forward in an al-Mg-Si alloy. In XXVIII International Mineral Processing Congress (IMPC) (pp. 1–11). Québec City.
  • Bansal, R. K. (2009). A textbook of strength of materials (4th ed.). Laxmi Publisher.
  • Bensmaine, A., Dahane, M., & Benyoucef, L. (2013). A non-dominated sorting genetic algorithm-based approach for optimal machine selection in a reconfigurable manufacturing environment. Computers and Industrial Engineering, 66(3), 519–524. https://doi.org/10.1016/j.cie.2012.09.008
  • Chen, J., Zhang, L. W., & Luo, J. Q. (2009). Reconfiguration cost analysis based on petrinet for manufacturing system. Journal of Software Engineering and Applications, 2(5), 361–369. https://doi.org/10.4236/jsea.2009.25048
  • Dametew, A. W., & Gebresenbet, T. (2017). Study the effects of spring back on sheet metal bending using mathematical methods. Journal of Material Science & Engineering, 6(382), 1–7. https://doi.org/10.4172/2169-0022.1000382
  • Daniyan, I. A., Adeodu, A. O., Oladapo, B. I., Daniyan, O. L., Ajetomobi, O. R., & Castellani, M. (2019). Development of a reconfigurable fixture for low-weight machining operations. Cogent Engineering, 6(1), 1579455, pp. 1–17. https://doi.org/10.1080/23311916.2019.1579455
  • Daniyan, I. A., Mpofu, K., Fameso, F. O., Adeodu, A. O., & Bello, K. A. (2019). Development and simulation of isotropic hardening for AISI 1035 for weld stress prediction during design and welding assembly of the lower bracket of rail cars. Procedia CIRP, 84, 916–922. https://doi.org/10.1016/j.procir.2019.04.297
  • Daniyan, I. A., Mpofu, K., Fameso, F., & Ale, F. (2020). Simulation of kinematic hardening model for carbon steel AISI 1035 weld stress prediction during the welding assembly of a railcar. Procedia CIRP, 93, 520526. https://doi.org/10.1016/j.procir.2020.04.057
  • Dashchenko, A. I. (Ed.). (2006). Reconfigurable manufacturing systems and transformable factories. Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-29397-3
  • Davoodi, B., & Zareh-Desari, B. (2014). Assessment of forming parameters influencing spring-back in multi-point forming process: A comprehensive experimental and numerical study. Materials & Design, 59, 103–114. https://doi.org/10.1016/j.matdes.2014.02.043
  • Elsu, E., Tosun, G. & Tosun, N. (2016). Investigation of springback behavior of DP series sheet metal in bending process. Proc. of the International Conference on Advances in Mechanical and Automation Engineering, Rome, Italy, pp. 22–16.
  • Eriyeti Murena, E., Mpofu, K., Ncube, A. T., Makinde, O., Trimble, J. A., & Wang, X. V. (2021). Development and performance evaluation of a web-based feature extraction and recognition system for sheet metal bending process planning operations. International Journal of Computer Integrated Manufacturing, 34(6), 598–620. https://doi.org/10.1080/0951192X.2021.1891570
  • Fang, Z., Lu, H., Wei, D., Jiang, Z., Zhao, X., Zhang, X., & Wu, D. (2014). Numerical study on springback with size effect in micro v-bending. Procedia Engineering, 81, 1011–1016. https://doi.org/10.1016/j.proeng.2014.10.133
  • Galan, R., Racero, J., Eguia, I., & Canca, D. (2007). A methodology for facilitating reconfiguration in manufacturing: The move towards reconfigurable manufacturing systems. The International Journal of Advanced Manufacturing Technology, 33(3–4), 345–353. https://doi.org/10.1007/s00170-006-0461-2
  • Gattmah, J., Ozturk, F., & Orhan, S. (2019). Numerical simulation of bending process for steel plate using finite element analysis. Arabian Journal for Science and Engineering, 44(12), 10285–10292. https://doi.org/10.1007/s13369-019-04119-8
  • Goyal, K. K., Jain, P. K., & Jain, M. (2012). Optimal configuration selection for reconfigurable manufacturing system using NSGA II and TOPSIS. International Journal of Production Research, 50(15), 4175–4191. https://doi.org/10.1080/00207543.2011.599345
  • Gu, X., & Koren, Y. (2018). Manufacturing system architecture for cost-effective mass-individualization. Manufacturing Letters, 16, 44–48. https://doi.org/10.1016/j.mfglet.2018.04.002
  • Jamwal, A., Agrawal, R., Sharma, M., Dangayach, G. S., & Gupta, S. (2021). Application of optimization techniques in metal cutting operations: A bibliometric analysis. Proceedings of the Materials Today, 38, 365–370.
  • Kazan, R., Fırat, M., & Tiryaki, A. E. (2009). Prediction of springback in wipe-bending process of sheet metal using neural network. Materials & Design, 30(2), 418–423. https://doi.org/10.1016/j.matdes.2008.05.033
  • Khleif, A. A., Kashkool, L. H., & Hassoon, O. H. (2020). Experimental investigation of hold time effect on springback in V-bending sheet metal forming process. IOP conf. Mater. Sci. Eng.
  • Kim, H. S., & Koç, M. (2008). Numerical investigations on springback characteristics of aluminium sheet metal alloys in warm forming conditions. Journal of Materials Processing Technology, 204(1–3), 370–383. https://doi.org/10.1016/j.jmatprotec.2007.11.059
  • Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., & Van Brussel, H. (1999). Reconfigurable manufacturing systems. CIRP Annals, 48(2), 527–540. https://doi.org/10.1016/S0007-8506(07)63232-6
  • Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Uslow, G., & Van Brussel, H. (1999). Reconfigurable manufacturing systems. CIRP-Annals Manufacturing Technology, 4(2), 527–540. https://doi.org/10.1016/S0007-8506(07)63232-6
  • Koren, Y., & Shpitalni, M. (2010). Design of reconfigurable manufacturing systems. Journal of Manufacturing Systems, 29(4), 130–141. https://doi.org/10.1016/j.jmsy.2011.01.001
  • Krishna, M. B., & Jayswal, S. C. (2012). Reconfiguration of manufacturing systems. International Journal of Engineering Research & Technology, 1(6), 1–5. https://doi.org/10.17577/IJERTV1IS6030
  • Lawanwomg, K., Hamasaki, H., Hino, R., & Yoshida, F. (2014). A Novel technology to eliminate U-bending springback of high-strength steel sheet by using additional bending with a counter punch. Procedia Engineering, 81, 957–962. https://doi.org/10.1016/j.proeng.2014.10.124
  • Lee, J., Lee, K., Kim, D., Choi, H., & Kim, B. (2015). Spring-back and spring-go behaviours in bending of thick plates of high-strength steel at elevated temperature. Computational Materials Science, 100, 76–79. https://doi.org/10.1016/j.commatsci.2014.10.059
  • Li, X., Dong, S., & Venuvinod, P. K. (2000). Hybrid learning for tool wear monitoring. The International Journal, Advanced Manufacturing Technology, 16(5), 303–307. https://doi.org/10.1007/s001700050161
  • Li, H., & Lu, X. (2015). Springback and tensile strength of 2A97 aluminium alloy during age forming. Transactions of Nonferrous Metals Society of China, 25(4), 1043–1049. https://doi.org/10.1016/S1003-6326(15)63696-2
  • Li, Y.-D., Tang, Z.-C., & Fu, Z.-J. (2020). Generalized finite difference method for plate bending analysis of functionally graded materials. Mathematics, 8(1940), 1–9. https://doi.org/10.3390/math8111940
  • Makeitfrom.com 7075-T7 Aluminum. [Online] Available at https://www.makeitfrom.com/material-properties/7075-T7-Aluminum [Retrieved December 22nd, 2022].
  • Malik, A. A., Masood, T., & Kousar, R. (2021). Reconfiguring and ramping-up ventilator production in the face of COVID-19: Can robots help? Journal of Manufacturing Systems, 60, 864–875. https://doi.org/10.1016/j.jmsy.2020.09.008
  • Mittal, K. K., & Jain, P. K. (2014). An overview of performance measures in reconfigurable manufacturing systems. Procedia Engineering, 69, 1125–1129. https://doi.org/10.1016/j.proeng.2014.03.100
  • Moghaddam, S. K., Houshmand, M., & Fatahi Valilai, O. (2018). Configuration design in scalable reconfigurable manufacturing systems (RMS); a case of single-product flow line (SPFL). International Journal of Production Research, 56(11), 3932–3954. https://doi.org/10.1080/00207543.2017.1412531
  • Mpofu, K., & Tlale, N. S. (2012). Multi-level decision making in reconfigurable machining systems using Fuzzy Logic. Journal of Manufacturing Systems, 31(2), 103–112. https://doi.org/10.1016/j.jmsy.2011.08.006
  • Nguyen, H. N., Hong, T. T., Vinh, P. V., & Thom, D. V. (2019). An efficient beam element based on quasi-3D theory for static bending analysis of functionally graded beams. Materials, 12(2198), 1–22. https://doi.org/10.3390/ma12132198
  • Olabanji, O. M., & Mpofu, K. (2020). Design sustainability of reconfigurable machines. IEEE Access, 8, 215956–215976. https://doi.org/10.1109/ACCESS.2020.3037998
  • Özdin, K., Büyük, E., Abdalov, F., Bayram, H., & Çini, A. (2014). Investigation of spring-back and spring-go of AISI 400 S sheet metal in “v” bending dies depending on bending angle and punch radius. Applied Mechanics and Materials, 532, 549–553. https://doi.org/10.4028/www.scientific.net/AMM.532.549
  • Prabhakar, A., Haneef, M., & Shabbir Ahmed, R. M. (2013). Sheet metal forming analyses with spring back deformation on U-Bends in Isotropic plates. International Journal of Innovative Research in Science, Engineering & Technology, 2(9), 4905–4913.
  • Rao, R. V., Rai, D. P., & Balic, J. (2017). A multi-objective algorithm for optimization of modern machining processes. Engineering Applications of Artificial Intelligence, 61, 103–125. https://doi.org/10.1016/j.engappai.2017.03.001
  • Safaei, M., De Waele, W. & Hertschap, K. (2011). Finite element analysis of influence of material anisotropy on the springback of advanced high strength steel. Proceedings of the International Conference on Advances in Materials and Processing Technologies (AMPT2010), Paris, France, 1315, 371–376.
  • Sen, M., & Shan, H. S. (2006). Optimal selection of machining conditions in the electrojet drilling process using hybrid NN-DF-GA approach optimal selection of machining conditions in the electrojet drilling process using hybrid NN-DF-GA approach. Materials & Manufacturing Processes, 6914(4), 349–356. https://doi.org/10.1080/10426910500411561
  • Shah, Y. (2015). Cost effective bending methods suitable for sheet metal works. [Online] Available at http://machinetools.bhavyamachinetools.com/cost-effective-bending-methods-suitable-for-sheet-metal-works/ Retrieved December 22nd, 2022.
  • Shang, X., Milisavljevic-Syed, J., Huang, S., Wang, G., Allen, J. K., & Mistree, F. (2020). A key feature-based method for the configuration design of a reconfigurable inspection system. International Journal of Production Research, 59(9), 2611–2623. https://doi.org/10.1080/00207543.2020.1735664
  • Sharma, P. K., Gautam, V. & Agrawal, A. K. (2021) Experimental and numerical investigations of springback and residual stresses in bending of a three-ply clad sheet. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235( 12):2823–2838.
  • Sibanda, V., Mpofu, K., Daniyan, I. A., Ale, F., & Guo, J. (2022). Reconfiguration ramp-up cost analysis for a reconfigurable guillotine shear and bending press machine. Cogent Engineering, 9(1), 1–24. https://doi.org/10.1080/23311916.2022.2085002
  • Sibanda, V., Mpofu, K., & Trimble, J. (2017). Framework for the development of a new reconfigurable guillotine shear and bending press machine. Procedia CIRP, 63, 366–371. https://doi.org/10.1016/j.procir.2017.03.353
  • Sibanda, V., Mpofu, K., & Trimble, J. (2021). Methodology for the design of a reconfigurable guillotine shear and bending press machine (RGS&BPM). Journal of Engineering, Design & Technology, 19(6), 1317–1343. https://doi.org/10.1108/JEDT-06-2020-0254
  • Sibanda, V., Mpofu, K., Trimble, J., & Kanganga, M. (2019). Development of part families for a reconfigurable machine. Journal of Engineering, Design & Technology, 18(5), 991–1014. https://doi.org/10.1108/JEDT-06-2019-0159
  • Siswanto, W. A., & Omar, B. (2009). Die surface design optimization accommodating springback assisted by an automatic surface generator. International Journal of Material Forming, 2(S1), 797–800. https://doi.org/10.1007/s12289-009-0500-2
  • Spring back. [Online] Available at http://sheetmetal.me/tooling-terminology/spring-back/ [Retrieved February 13th, 2023].
  • Surya, M. S. (2023). Fabrication, interlayer bonding and mechanical characterization of four layered AA7075/SiC functionally graded material. Silicon, 15(10), 1–8. https://doi.org/10.1007/s12633-023-02379-6
  • Surya, M. S., Vepa, K. S., & Karanam, M. (2019). Optimization of machining parameters using ANOVA and grey relational analysis while turning aluminium 7075. International Journal of Recent Technology and Engineering, 8(2), 5682–5686. https://doi.org/10.35940/ijrte.B3038.078219
  • Vinh, P. V., & Martos, F. J. 6653350 Formulation of a new mixed four-node quadrilateral element for static bending analysis of variable thickness functionally graded material plates. Mathematical Problems in Engineering, 2021 1–23. https://doi.org/10.1155/2021/6653350
  • Wang, J., Chen, Y., Wang, Y., & Huang, S. (2020). Study on flexible bending process of sheet metal and its production equipment. Advances in Engineering Research, 181, 187–190. https://doi.org/10.2991/ice2me-19.2019.42
  • Welo, T., & Widerøe, F. (2010). Precision bending of high-quality components for volume applications. Transactions of Nonferrous Metals Society of China, 20(11), 2100–2110. https://doi.org/10.1016/S1003-6326(09)60425-8
  • Wiendahl, H. P., ElMaraghy, H. A., Nyhuis, P., Zäh, M. F., Wiendahl, H. H., Duffie, N., & Brieke, M. (2007). Changeable manufacturing classification, design, and operation. CIRP Annals, 56(2), 783–809. https://doi.org/10.1016/j.cirp.2007.10.003
  • Xie, N., Li, A., & Xue, W. (2012). Cooperative optimization of reconfigurable machine tool configurations and production process plan. Chinese Journal of Mechanical Engineering, 25(5), 982–989. https://doi.org/10.3901/CJME.2012.05.982
  • Yoon, J.-S., Son, S.-E., Song, W.-J., Kim, J., & Kang, B.-S. (2014). Study on flexibly-reconfigurable roll forming process for multi-curved surface of sheet metal. International Journal of Precision Engineering and Manufacturing, 15(6), 1069–1074. https://doi.org/10.1007/s12541-014-0438-2
  • Zenkour, A. M., Hafed, Z. S., & Radwan, A. F. (2020). Bending analysis of functionally graded nanoscale plates by using nonlocal mixed variational formula. Mathematics, 8(1162), 1–14. https://doi.org/10.3390/math8071162
  • Zhang, D., & Bi, Z. (2011). Development of reconfigurable parallel kinematic machines using modular design approach. Proceedings of the Canadian Engineering Education Association, Toronto, ON.