337
Views
1
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Effect of ring baffle on erosion in circulating fluidized bed boiler

, , , , &
Article: 2274534 | Received 06 Apr 2023, Accepted 19 Oct 2023, Published online: 02 Nov 2023

References

  • Allen, K. G., von Backström, T. W., & Kröger, D. G. (2013). Packed bed pressure drop dependence on particle shape, size distribution, packing arrangement and roughness. Powder Technology, 246, 590–23. https://doi.org/10.1016/j.powtec.2013.06.022
  • ANSYS, Inc. (2009). ANSYS user Guide (12.0).
  • ANSYS Inc. (2015). Mesh quality and advanced topics ansys workbench 16.0. Ansys, 1–37.
  • Basu, P. (2015). Circulating fluidized bed boilers : Design, operation and maintenance. In Thermal engineering (Vol. 54, 6). Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-06173-3
  • Benzarti, S., Mhiri, H., & Bournot, H. (2021). Numerical simulation of baffled circulating fluidized bed with geldart B particles. Powder Technology, 380, 629–637. https://doi.org/10.1016/j.powtec.2020.11.033
  • Bitter, J. G. A. (1963). A study of erosion phenomena part I. Wear, 6(1), 5–21. https://doi.org/10.1016/0043-1648(63)90003-6
  • Bu, J., & Zhu, J. X. (1999). Influence of ring-type internals on axial pressure distribution in circulating fluidized bed. Canadian Journal of Chemical Engineering, 77(1), 26–34. https://doi.org/10.1002/cjce.5450770106
  • Cengel, Y. A., & Cimbala, J. M. (2006). Fluid Mechanics: Fundamentals and applications. McGraw-Hill.
  • Chandimal Bandara, J., Sørflaten Eikeland, M., & Moldestad, B. M. E. (2017). Analyzing the effects of particle density, size, size distribution and shape for minimum fluidization velocity with Eulerian-Lagrangian CFD simulation. Proceedings of the 58th Conference on Simulation and Modelling (SIMS 58) Reykjavik, Iceland, September 25th – 27th, 2017, 138, 60–65. https://doi.org/10.3384/ecp1713860
  • Chen, J., Wang, Y., Li, X., He, R., Han, S., & Chen, Y. (2015). Erosion prediction of liquid-particle two-phase flow in pipeline elbows via CFD-DEM coupling method. Powder Technology, 275, 182–187. https://doi.org/10.1016/j.powtec.2014.12.057
  • Darihaki, F., Zhang, J., Vieira, R. E., & Shirazi, S. A. (2021). The near-wall treatment for solid particle erosion calculations with CFD under gas and liquid flow conditions in elbows. Advanced Powder Technology, 32(5), 1663–1676. https://doi.org/10.1016/j.apt.2021.03.020
  • Ergun, S. (1952). Fluid flow through packed columns. Chemical Engineering Progress, 48, 89–94. https://doi.org/10.1021/ie50474a011
  • Farokhipour, A., Mansoori, Z., Rasteh, A., Rasoulian, M. A., Saffar-Avval, M., & Ahmadi, G. (2019). Study of erosion prediction of turbulent gas-solid flow in plugged tees via CFD-DEM. Powder Technology, 352, 136–150. https://doi.org/10.1016/j.powtec.2019.04.058
  • Feng, X., Shen, L., & Wang, L. (2018). Effect of baffle on hydrodynamics in the air reactor of dual circulating fluidized bed for chemical looping process. Powder Technology, 340, 88–98. https://doi.org/10.1016/j.powtec.2018.09.012
  • Gandhi, M. B., Vuthaluru, R., Vuthaluru, H., French, D., & Shah, K. (2012). CFD based prediction of erosion rate in large scale wall-fired boiler. Applied Thermal Engineering, 42, 90–100. https://doi.org/10.1016/j.applthermaleng.2012.03.015
  • Gidaspow, D. (1986). Hydrodynamics of fluidization of single and binary size particles: Supercomputer modeling. Applied Mechanics Reviews, 39(1), 1–23. https://doi.org/10.1115/1.3143702
  • Gu, J., Shao, Y., & Zhong, W. (2020). 3D simulation on pressurized oxy-fuel combustion of coal in fluidized bed. Advanced Powder Technology, 31(7), 2792–2805. https://doi.org/10.1016/j.apt.2020.05.005
  • Jiang, P., Bi, H., Jean, R. H., & Fan, L. S. (1991). Baffle effects on performance of catalytic circulating fluidized bed reactor. AIChE Journal, 37(9), 1392–1400. https://doi.org/10.1002/aic.690370911
  • Kang, R., & Liu, H. (2020). An integrated model of predicting sand erosion in elbows for multiphase flows. Powder Technology, 366, 508–519. https://doi.org/10.1016/j.powtec.2020.02.072
  • Lin, N., Arabnejad, H., Shirazi, S. A., McLaury, B. S., & Lan, H. (2018). Experimental study of particle size, shape and particle flow rate on erosion of stainless steel. Powder Technology, 336, 70–79. https://doi.org/10.1016/j.powtec.2018.05.039
  • Liu, H., Li, J., & Wang, Q. (2017). Simulation of gas–solid flow characteristics in a circulating fluidized bed based on a computational particle fluid dynamics model. Powder Technology, 321, 132–142. https://doi.org/10.1016/j.powtec.2017.07.040
  • Li, N., Zhang, Y., Jiang, F., Qi, G., Wang, H., Su, R., Zhang, W., & Shi, N. (2020). Joint effects of liquid level and baffle height on the particle distribution and pressure drop in a vertical two-pass circulating fluidized bed evaporator with a baffle. Powder Technology, 364, 27–35. https://doi.org/10.1016/j.powtec.2020.01.063
  • Li, N., Zhang, Y., Jiang, F., Wang, H., & Li, X. (2020). Effects of particle type on the particle distribution in a two-pass circulating fluidized bed evaporator with baffle. Powder Technology, 366, 1–11. https://doi.org/10.1016/j.powtec.2020.02.038
  • Lopes, G. C., Rosa, L. M., Mori, M., Nunhez, J. R., & Martignoni, W. P. (2011). Three-dimensional modeling of fluid catalytic cracking industrial riser flow and reactions. Computers and Chemical Engineering, 35(11), 2159–2168. https://doi.org/10.1016/j.compchemeng.2010.12.014
  • Lu, B., Zhang, N., Wang, W., & Li, J. (2013). 3-D full-loop simulation of an industrial-scale circulating fluidized-bed boiler. AIChE Journal, 59(4), 1108–1117. https://doi.org/10.1002/aic.13917
  • Marchelli, F., Hou, Q., Bosio, B., Arato, E., & Yu, A. (2020). Comparison of different drag models in CFD-DEM simulations of spouted beds. Powder Technology, 360, 1253–1270. https://doi.org/10.1016/j.powtec.2019.10.058
  • Mbabazi, J. G., & Sheer, T. J. (2004). Numerical Prediction of Erosion of Mild Steel Surfaces by Boiler Fly Ash Particles, 1, 595–604. https://doi.org/10.1115/ESDA2004-58074
  • Menter, F. R. (1993). Zonal two equation k-ω turbulence models for aerodynamic flows. AIAA Paper, 93–2906.
  • Mirek, P. (2020). Air Distributor pressure drop analysis in a circulating fluidized-bed boiler for non-reference operating conditions. Chemical Engineering and Technology, 43(11), 2233–2246. https://doi.org/10.1002/ceat.201900565
  • Muhammad, A., Zhang, N., & Wang, W. (2019). CFD simulations of a full-loop CFB reactor using coarse-grained Eulerian–Lagrangian dense discrete phase model: Effects of modeling parameters. Powder Technology, 354, 615–629. https://doi.org/10.1016/j.powtec.2019.06.016
  • Namkung, W., & Kim, S. D. (1998). Gas backmixing in a circulating fluidized bed. Powder Technology, 99(1), 70–78. https://doi.org/10.1016/S0032-5910(98)00092-8
  • Papathanassiou, G., Maeder, P. F., DiPippo, R., & Dickinson, D. A. (1983). Void fraction correlations in two-phase horizontal flow. Brown University Providence.
  • Pinheiro, C. I. C., Fernandes, J. L., Domingues, L., Chambel, A. J. S., Graça, I., Oliveira, N. M. C., Cerqueira, H. S., & Ribeiro, F. R. (2012). Fluid catalytic cracking (FCC) process modeling, simulation, and control. Industrial and Engineering Chemistry Research, 51(1), 1–29. https://doi.org/10.1021/ie200743c
  • Qi, G., & Jiang, F. (2015). Parametric study of particle distribution in tube bundle heat exchanger. Powder Technology, 271, 210–220. https://doi.org/10.1016/J.POWTEC.2014.11.012
  • Rossbach, V., Utzig, J., Decker, R. K., Noriler, D., & Meier, H. F. (2016). Numerical gas-solid flow analysis of ring-baffled risers. Powder Technology, 297, 320–329. https://doi.org/10.1016/j.powtec.2016.04.044
  • Rossbach, V., Utzig, J., Decker, R. K., Noriler, D., Soares, C., Martignoni, W. P., & Meier, H. F. (2019). Gas-solid flow in a ring-baffled CFB riser: Numerical and experimental analysis. Powder Technology, 345, 521–531. https://doi.org/10.1016/j.powtec.2018.12.096
  • Samruamphianskun, T., Piumsomboon, P., & Chalermsinsuwan, B. (2012). Effect of ring baffle configurations in a circulating fluidized bed riser using CFD simulation and experimental design analysis. Chemical Engineering Journal, 210, 237–251. https://doi.org/10.1016/j.cej.2012.08.079
  • Tarodiya, R., & Levy, A. (2021). Surface erosion due to particle-surface interactions - A review. Powder Technology, 387, 527–559. https://doi.org/10.1016/J.POWTEC.2021.04.055
  • Therdthianwong, A., Pantaraks, P., & Therdthianwong, S. (2003). Modeling and simulation of circulating fluidized bed reactor with catalytic ozone decomposition reaction. Powder Technology, 133(1–3), 1–14. https://doi.org/10.1016/S0032-5910(03)00120-7
  • Utzig, J., De Souza, F. J., & Meier, H. F. (2014). A numerical analysis of the turbophoresis in a turbulent gas-particle flow. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM, 1C, 13–14. https://doi.org/10.1115/FEDSM2014-21993
  • Uzi, A., Ben Ami, Y., & Levy, A. (2017). Erosion prediction of industrial conveying pipelines. Powder Technology, 309, 49–60. https://doi.org/10.1016/j.powtec.2016.12.087
  • Van de Velden, M., Baeyens, J., & Smolders, K. (2007). Solids mixing in the riser of a circulating fluidized bed. Chemical Engineering Science, 62(8), 2139–2153. https://doi.org/10.1016/j.ces.2006.12.069
  • Versteeg, H. K., & Malalasekera, W. (1995). An introduction to computational Fluid dynamics: The finite volume method (1st ed.). Longman Scientific & Technical.
  • Wanchan, W., Khongprom, P., & Limtrakul, S. (2020). Study of wall-to-bed heat transfer in circulating fluidized bed riser based on CFD simulation. Chemical Engineering Research and Design, 156, 442–455. https://doi.org/10.1016/j.cherd.2020.02.021
  • Wang, S., Luo, K., Hu, C., & Fan, J. (2018). Particle-scale investigation of heat transfer and erosion characteristics in a three-dimensional circulating fluidized bed. Industrial and Engineering Chemistry Research, 57(19), 6774–6789. https://doi.org/10.1021/acs.iecr.8b00353
  • Wang, S., Luo, K., Hu, C., & Fan, J. (2019). CFD-DEM study of the effect of ring baffles on system performance of a full-loop circulating fluidized bed. Chemical Engineering Science, 196, 130–144. https://doi.org/10.1016/j.ces.2018.10.056
  • Wang, P., Yao, X., Yang, H., & Zhang, M. (2014). Impact of particle properties on gas solid flow in the whole circulating fluidized bed system. Powder Technology, 267, 193–200. https://doi.org/10.1016/j.powtec.2014.06.065
  • Wu, Y., Liu, D., Duan, L., Ma, J., Xiong, J., & Chen, X. (2018). Three-dimensional CFD simulation of oxy-fuel combustion in a circulating fluidized bed with warm flue gas recycle. Fuel, 216(October 2017), 596–611. https://doi.org/10.1016/j.fuel.2017.12.042
  • Xu, L., Cheng, L., Cai, Y., Liu, Y., Wang, Q., Luo, Z., & Ni, M. (2016). Heat flux determination based on the waterwall and gas-solid flow in a supercritical CFB boiler. Applied Thermal Engineering, 99, 703–712. https://doi.org/10.1016/j.applthermaleng.2016.01.109
  • Xu, Y., Musser, J., Li, T., Gopalan, B., Panday, R., Tucker, J., Breault, G., Clarke, M. A., & Rogers, W. A. (2018). Numerical simulation and experimental study of the gas-solid flow behavior inside a full-loop circulating fluidized bed: Evaluation of different drag models. Industrial and Engineering Chemistry Research, 57(2), 740–750. https://doi.org/10.1021/acs.iecr.7b03817
  • Zhang, N., Lu, B., Wang, W., & Li, J. (2010). 3D CFD simulation of hydrodynamics of a 150MWe circulating fluidized bed boiler. Chemical Engineering Journal, 162(2), 821–828. https://doi.org/10.1016/j.cej.2010.06.033
  • Zhang, R., Zhao, X., Zhao, G., Dong, S., & Liu, H. (2021). Analysis of solid particle erosion in direct impact tests using the discrete element method. Powder Technology, 383, 256–269. https://doi.org/10.1016/j.powtec.2021.01.034