85
Views
0
CrossRef citations to date
0
Altmetric
Electrical & Electronic Engineering

Online analysis of MFC-fuzzy PI based LF-HVAC system

ORCID Icon, &
Article: 2341539 | Received 03 Sep 2022, Accepted 07 Apr 2024, Published online: 04 Jul 2024

References

  • Anand, M., Goswami, S. K., & Chatterjee, D. (2022). Multi-frequency control with fuzzy 2DOFPI in HVBTB converter of LF-HVAC system. International Journal of Emerging Electric Power Systems, 24(6), 717–728. https://doi.org/10.1515/ijeeps-2022-0133
  • Barrero, F., Gonz’alez, A., Torralba, A., Galv’an, E., & Franquelo, L. G. (2002). Speed control of induction motors using a novel fuzzy sliding-mode structure. IEEE Transactions on Fuzzy Systems, 10(3), 375–383. https://doi.org/10.1109/TFUZZ.2002.1006440
  • Beerten, J., Belmans, R., & Cole, S. (2010). A sequential AC/DC power flow algorithm for networks containing multi-terminal VSC HVDC systems [Paper presentation]. IEEE PES General Meeting (pp. 1–7).
  • Bucher, M., Wiget, R., Andersson, G., & Franck, C. (2014). Multiterminal HVDC networks—What is the preferred topology? IEEE Transactions on Power Delivery, 29(1), 406–413. https://doi.org/10.1109/TPWRD.2013.2277552
  • Challa, R. V. K., Mikkili, S., & Bonthagorla, P. K. (2022). A critical review on hybrid-topologies, modulation techniques, and controlling approaches of modular multilevel converter for grid integration. IETE Journal of Research, 70(2), 1997–2031. https://doi.org/10.1080/03772063.2022.2143438
  • Fischer, W., Braun, R., & Erlich, I. (2012). Low frequency high voltage offshore grid for transmission of renewable power [Paper presentation]. Proceedings of the 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe) (pp. 1–6).
  • Garg A., Bhoi A., Sanjeevikumar P., & Kamani K. (Eds.). (2018). Advances in power systems and energy management. Lecture notes in electrical engineering (Vol. 436). Springer. https://doi.org/10.1007/978-981-10-4394-9_8
  • Jantzen, J. (1998). Tuning of fuzzy PID controllers. Technical University of Denmark, Department of Automation.
  • Li, W., Joós, G., & Bélanger, J. (2010). Real-time simulation of a wind turbinegenerator coupled with a battery supercapacitor energy storage system. IEEE Transactions on Industrial Electronics. 57(4), 1137–1145.
  • Lin, N., & Dinavahi, V. (2018). Detailed device-level electrothermal modeling of the proactive hybrid HVDC breaker for real-time hardware-in-the-loop simulation of DC grids. IEEE Transactions on Power Electronics, 33(2), 1118–1134.
  • Ngo, T., Nguyen, Q., & Santoso, S. (2016). Voltage stability of low frequency ac transmission systems [Paper presentation]. Proceedings of the IEEE/PES Transmission and Distribution Conference and Exposition (T&D) (pp. 1–5).
  • Nguyen, Q., Todeschini, G., & Santoso, S. (2019). Power flow in a multifrequency HVac and HVdc system: Formulation, solution, and validation. IEEE Transactions on Power Systems, 34(4), 2487–2497. https://doi.org/10.1109/TPWRS.2019.2896023
  • Rosewater, D., Nguyen, Q., & Santoso, S. (2018). Optimal field voltage and energy storage control for stabilizing synchronous generators on flexible ac transmission systems [Paper presentation]. Proceedings of the IEEE/PES Transmission and Distribution Conference and Exposition (T&D) (pp. 1–9).
  • Ruddy, J., Meere, R., O’Loughlin, C., & O’Donnell, T. (2016). Scaled hardware verification of low frequency AC transmission system for interconnection of offshore wind [Paper presentation]. 5th IET International Conference on Renewable Power Generation (RPG) 2016 (pp. 1–6).
  • Yoo, H.-J., Nguyen, T.-T., & Kim, H.-M. (2017). Multi-frequency control in a stand-alone multi-microgrid system using a back-to-back converter. Energies, 10(6), 822. https://doi.org/10.3390/en10060822
  • Zhao, B., Zhang, X., & Chen, J. (2012). Integrated microgrid laboratory system. IEEE Transactions on Power Systems, 27(4), 2175–2185. https://doi.org/10.1109/TPWRS.2012.2192140