654
Views
0
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

Performance evaluation of various hydrological models with respect to hydrological responses under climate change scenario: a review

, ORCID Icon, , , , & show all
Article: 2360007 | Received 27 Nov 2023, Accepted 22 May 2024, Published online: 03 Jun 2024

References

  • Abdi, D. A. (2021). Evaluation of the WEAP model in simulating subbasin hydrology in the Central Rift Valley basin, Ethiopia. Ecological Processes, 10, 41.
  • Abdule, A. M., Muluneh, A., & Woldemichael, A. (2023). Impact of climate and land use/cover changes on streamflow in Yadot Watershed, Genale Dawa Basin, Ethiopia. Air, Soil and Water Research, 16. https://doi.org/10.1177/11786221231200106
  • Abera Abdi, D., & Ayenew, T. (2021). Evaluation of the WEAP model in simulating subbasin hydrology in the Central Rift Valley basin, Ethiopia. Ecological Processes, 10(1), 41. https://doi.org/10.1186/s13717-021-00305-5
  • Addor, N., Nearing, G., Prieto, C., Newman, A. J., Vine, N. L., & Clark, M. P. (2018). A ranking of hydrological signatures based on their predictability in space. https://doi.org/10.1029/2018WR022606
  • Ahmadi, M., Moeini, A., Ahmadi, H., Motamedvaziri, B., & Zehtabiyan, G. R. (2019). Comparison of the Performance of SWAT, IHACRES and Artificial Neural Networks models in rainfall-runoff simulation (Case study: Kan watershed, Iran). Physics and Chemistry of the Earth, 111, 65–77. https://doi.org/10.1016/j.pce.2019.05.002
  • Akhter, M., Malik, M. I., Mehraj, T., Shah, A. F., Ahmad, S., Bhat, W. A., & Mujeeb, S. (2022). Runoff modelling of Aripal watershed using SWAT model. Arabian Journal of Geosciences, 15(16), 1419. https://doi.org/10.1007/s12517-022-10708-z
  • Akirso, B., Haile, A., Desta, B., & Itana, B. (2022). Assessment of climate change impact on hydro ‑ climatic variables and its trends over Gidabo Watershed. Modeling Earth Systems and Environment, 8(3), 3769–3791. https://doi.org/10.1007/s40808-021-01327-w
  • Al-Areeq, A. M., Al-Zahrani, M. A., & Sharif, H. O. (2021). The performance of physically based and conceptual hydrologic models: A case study for Makkah watershed, Saudi Arabia. Water, 13(8), 1098. https://doi.org/10.3390/w13081098
  • Al-Mukhtar, M., & Al-Yaseen, F. (2019). Modeling water quality parameters using. Hydrology, 6(1), 24. https://doi.org/10.3390/hydrology6010024
  • Alamdari, N., Sample, D. J., Steinberg, P., Ross, A. C., & Easton, Z. M. (2017). Assessing the effects of climate change on water quantity and quality in an urban watershed using a calibrated stormwater model. Water, 9(7), 464. https://doi.org/10.3390/w9070464
  • Aliye, M. A., Aga, A. O., Tadesse, T., & Yohannes, P. (2020). Evaluating the performance of HEC-HMS and SWAT hydrological models in simulating the rainfall-runoff process for data scarce region of Ethiopian Rift Valley Lake Basin. Open Journal of Modern Hydrology, 10(04), 105–122. https://doi.org/10.4236/ojmh.2020.104007
  • Althoff, D., & Neiva, L. (2021). Goodness-of-fit criteria for hydrological models: Model calibration and performance assessment. Journal of Hydrology, 600(July), 126674. https://doi.org/10.1016/j.jhydrol.2021.126674
  • Ang, R., & Oeurng, C. (2019). Simulating streamflow in an ungauged catchment of Tonlesap Lake Basin in Cambodia using Soil and Water Assessment Tool (SWAT) model Simulating streamflow in an ungauged catchment of Tonlesap Lake Basin in Cambodia using Soil and Water Assessment Tool. Water Science, 32(1), 89–101. https://doi.org/10.1016/j.wsj.2017.12.002
  • Anshuman, A., Kunnath, A., & Eldho, P. T. I. (2019). Towards the use of conceptual models for water resource assessment in Indian tropical watersheds under monsoon ‑ driven climatic conditions. Environmental Earth Sciences, 78(9), 1–15. https://doi.org/10.1007/s12665-019-8281-5
  • Aqnouy, M., Ahmed, M., Ayele, G. T., Bouizrou, I., Bouadila, A., & Stitou El Messari, J. E. (2023). Comparison of hydrological platforms in assessing rainfall-runoff behavior in a Mediterranean watershed of. Water, 15(3), 447. –https://doi.org/10.3390/w15030447
  • Aqnouy, M., Eddine, J., El, S., Ismail, H., Bouadila, A., Gabriel, J., Navarro, M., Loubna, B., Reda, M., & Mansour, A. (2019). Assessment of the SWAT model and the parameters affecting the flow simulation in the watershed of Oued Laou (Northern Morocco). Journal of Ecological Engineering, 20(4), 104–113. https://doi.org/10.12911/22998993/102794
  • Aredo, M. R., Hatiye, S. D., & Pingale, S. M. (2021a). Impact of land use/land cover change on stream flow in the Shaya catchment of Ethiopia using the MIKE SHE model. Arabian Journal of Geosciences, 14(2), 114. https://doi.org/10.1007/s12517-021-06447-2
  • Aredo, M. R., Hatiye, S. D., & Pingale, S. M. (2021b). Modeling the rainfall-runoff using MIKE 11 NAM model in Shaya catchment, Ethiopia. Modeling Earth Systems and Environment, 7(4), 2545–2551. https://doi.org/10.1007/s40808-020-01054-8
  • Arsenault, R., Breton-Dufour, M., Poulin, A., Dallaire, G., & Romero-Lopez, R. (2019). Streamflow prediction in ungauged basins: analysis of regionalization methods in a hydrologically heterogeneous region of Mexico. Hydrological Sciences Journal, 64(11), 1297–1311. https://doi.org/10.1080/02626667.2019.1639716
  • Arsenault, R., Gatien, P., Renaud, B., Brissette, F., & Martel, J. (2015). A comparative analysis of 9 multi-model averaging approaches in hydrological continuous streamflow simulation. Journal of Hydrology, 529, 754–767. https://doi.org/10.1016/j.jhydrol.2015.09.001
  • Atanaw, S. B., Zimale, F. A., Ayenew, T., & Ayele, G. T. (2023). Modeling future hydrological responses through parameter optimization and climate change scenarios in Dirima Watershed, Ethiopia. Modeling Earth Systems and Environment, 10(1), 1117–1135. https://doi.org/10.1007/s40808-023-01817-z
  • Atif, I., Iqbal, J., & Su, L. J. (2019). Modeling hydrological response to climate change in a data-scarce glacierized high mountain Astore basin using a fully distributed TOPKAPI model. Climate, 7(11), 127. https://doi.org/10.3390/cli7110127
  • Ávila, L., Silveira, R., Campos, A., Rogiski, N., Gonçalves, J., Scortegagna, A., Freita, C., Aver, C., & Fan, F. (2022). Comparative evaluation of five hydrological models in a large-scale and tropical river basin. Water, 14(19), 3013. https://doi.org/10.3390/w14193013
  • Ayalew, D. W., Petroselli, A., De Luca, D. L., & Grimaldi, S. (2022). An evidence for enhancing the design hydrograph estimation for small and ungauged basins in Ethiopia. Journal of Hydrology: Regional Studies, 42(May), 101123. https://doi.org/10.1016/j.ejrh.2022.101123
  • Azad, A., Farzin, S., Kashi, H., Sanikhani, H., Karami, H., & Kisi, O. (2018). Prediction of river flow using hybrid neuro-fuzzy models. Arabian Journal of Geosciences, 11(22), 718. https://doi.org/10.1007/s12517-018-4079-0
  • Balcha, S. K., Awass, A. A., Hulluka, T. A., Bantider, A., & Ayele, G. T. (2023). Assessment of future climate change impact on water balance components in Central Rift Valley Lakes Basin, Ethiopia. Journal of Water and Climate Change, 14(1), 175–199. https://doi.org/10.2166/wcc.2022.249
  • Banda, V. D., Dzwairo, R. B., Singh, S. K., & Kanyerere, T. (2022). Hydrological modelling and climate adaptation under changing climate: A review with a focus in Sub-Saharan Africa. Water, 14(24), 4031. https://doi.org/10.3390/w14244031
  • Barrientos, G., Herrero, A., Iroumé, A., Mardones, O., & Batalla, R. J. (2020). Modelling the effects of changes in forest cover and climate on hydrology of headwater catchments in. Water, 12(6), 1828. https://doi.org/10.3390/w12061828
  • Bastola, S., Murphy, C., & Sweeney, J. (2011). The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments. Advances in Water Resources, 34(5), 562–576. https://doi.org/10.1016/j.advwatres.2011.01.008
  • Beg, N. A., Leandro, J., Bhola, P., Konnerth, I., Willems, W., Carvalho, R. F., & Disse, M. (2019). Discharge Interval method for uncertain flood forecasts using a flood model chain: city of Kulmbach. Journal of Hydroinformatics, 21(5), 925–944. |, https://doi.org/10.2166/hydro.2019.131
  • Bekele, D., Alamirew, T., Kebede, A., Zeleke, G., & M. Melesse, A. (2019). Modeling climate change impact on the hydrology of Keleta watershed in the Awash River Basin, Ethiopia. Environmental Modeling & Assessment, 24(1), 95–107. https://doi.org/10.1007/s10666-018-9619-1
  • Bian, G., Zhang, J., Song, M., Qian, X., Guan, T., & Wang, G. (2023). Projections of flood regime changes over the upper-middle Huaihe River Basin in China based on CMIP6 models. Frontiers in Environmental Science, 11, 1–16. https://doi.org/10.3389/fenvs.2023.1247753
  • Bibi, T. S. (2022). Modeling urban stormwater management in the town of Dodola based on landuse and climate change using SWMM 5. Journal of Hydrology: Regional Studies, 44(November), 101267. https://doi.org/10.1016/j.ejrh.2022.101267
  • Bingeman, A. K., Kouwen, N., & Soulis, E. D. (2006). Validation of the hydrological processes in a hydrological model. Journal of Hydrologic Engineering, 11(5), 451–463.) https://doi.org/10.1061/(ASCE)1084-0699(2006)11:5(451)
  • Birocchi, P., Augusto, D., Dalton, S., Sasaki, K., & Dottori, M. (2023). Estimating river discharge from rainfall satellite data through simple statistical models. Theoretical and Applied Climatology, 153(1–2), 241–261. https://doi.org/10.1007/s00704-023-04459-4
  • Bizuneh, B. B., Moges, M. A., Sinshaw, B. G., & Kerebih, M. S. (2021). SWAT and HBV models’ response to streamflow estimation in the upper Blue Nile Basin, Ethiopia. Water-Energy Nexus, 4, 41–53. https://doi.org/10.1016/j.wen.2021.03.001
  • Boisvert, J., El-Jabi, N., St-Hilaire, A., & Adlouni, S. E. (2016). Parameter estimation of a distributed hydrological model using a genetic algorithm. Open Journal of Modern Hydrology, 06(03), 151–167. https://doi.org/10.4236/ojmh.2016.63013
  • Bouadila, A., Bouizrou, I., Aqnouy, M., En-Nagre, K., El-Yousf, Y., Khafouri, A., Hilal, I., Kamal, A., Lahcen, B., Tamer, A.-A., Eddine, J., Messari, E., & Abioui, M. (2023). Streamflow simulation in semiarid data-scarce regions. Water, 15(8), 1602.  https://doi.org/10.3390/w15081602
  • Bournas, A., & Baltas, E. (2021). Increasing the efficiency of the Sacramento model on event basis in a mountainous River Basin. Environmental Processes, 8(2), 943–958. https://doi.org/10.1007/s40710-021-00504-4
  • Buddika, D., & Coulibaly, P. (2020). Identification of hydrological models for operational flood forecasting in St. John’s, Newfoundland, Canada. Journal of Hydrology: Regional Studies, 27(March 2019), 100646. https://doi.org/10.1016/j.ejrh.2019.100646
  • Bugaets, A., Gartsman, B., Gubareva, T., Lupakov, S., Kalugin, A., Shamov, V., & Gonchukov, L. (2023). Comparing the runoff decompositions of small experimental catchments: End-member mixing analysis (EMMA) vs. Hydrological modelling. Water, 15(4), 752. https://doi.org/10.3390/w15040752
  • Cenobio-Cruz, O., Quintana-Seguí, P., Barella-Ortiz, A., Zabaleta, A., Garrote, L., Clavera-Gispert, R., Habets, F., & Beguería, S. (2023). Improvement of low flows simulation in the SASER hydrological modeling chain. Journal of Hydrology, 18(September 2022), 100147. https://doi.org/10.1016/j.hydroa.2022.100147
  • Chathuranika, I. M., Gunathilake, M. B., Baddewela, P. K., Sachinthanie, E., Babel, M. S., Shrestha, S., Jha, M. K., & Rathnayake, U. S. (2022). Comparison of two hydrological models, HEC-HMS and SWAT in runoff estimation: Application to Huai Bang Sai Tropical Watershed, Thailand. Fluids, 7(8), 267. https://doi.org/10.3390/fluids7080267
  • Chilkoti, V., Bolisetti, T., & Balachandar, R. (2018). Multi-objective autocalibration of SWAT model for improved low flow performance for a small snowfed catchment. Hydrological Sciences Journal, 63(10), 1482–1501. https://doi.org/10.1080/02626667.2018.1505047
  • Costa, D., Avelino, R., Sára, S., Thomazini, L., Aurélio, M., & Caiado, C. (2015). Application of the SWAT hydrologic model to a tropical watershed at Brazil. CATENA, 125, 206–213. https://doi.org/10.1016/j.catena.2014.10.032
  • Cui, T., Yang, T., Xu, C.-Y., Shao, Q., Wang, X., & Li, Z. (2018). Assessment of the impact of climate change on flow regime at multiple temporal scales and potential ecological implications in an alpine river. Stochastic Environmental Research and Risk Assessment, 32(6), 1849–1866. https://doi.org/10.1007/s00477-017-1475-z
  • Darbandsari, P., & Coulibaly, P. (2020). Inter-comparison of lumped hydrological models in data-scarce watersheds using different precipitation forcing data sets: Case study of Northern Ontario, Canada. Journal of Hydrology: Regional Studies, 31(August), 100730. https://doi.org/10.1016/j.ejrh.2020.100730
  • De Luca, D. L., Apollonio, C., & Petroselli, A. (2022). The benefit of continuous hydrological modelling for drought hazard assessment in small and coastal ungauged basins: A case study in Southern Italy. Climate, 10(3), 34. https://doi.org/10.3390/cli10030034
  • Dehua, Z., Samiran, D., & Qiwei, R. (2017). Hydrological appraisal of climate change impacts on the water resources of the Xijiang Basin. Water, 9(10), 793. https://doi.org/10.3390/w9100793
  • Dessalegn, T. A., Moges, M. A., Dagnew, D. C., & Gashaw, A. (2017). Applicability of galway river flow forecasting and modeling system (GFFMS) for Lake Tana Basin, Ethiopia. Journal of Water Resource and Protection, 09(12), 1319–1334. https://doi.org/10.4236/jwarp.2017.912084
  • Devi, G. K., Ganasri, B. P., & Dwarakish, G. S. (2015). A review on hydrological models. ScienceDirect, 4(Icwrcoe), 1001–1007. https://doi.org/10.1016/j.aqpro.2015.02.126
  • Dibaba, W. T., Demissie, T. A., & Miegel, K. (2020). Watershed hydrological response to combined land use/land cover and climate change in highland. Water, 12(6), 1801. https://doi.org/10.3390/w12061801
  • Didovets, I., Lobanova, A., Bronstert, A., Snizhko, S., Maule, C. F., & Krysanova, V. (2017). Assessment of climate change impacts on water catchments using eco-hydrological modelling. Water, 9(3), 204. https://doi.org/10.3390/w9030204
  • Diriba, B. T. (2021). Surface runoff modeling using SWAT analysis in Dabus watershed, Ethiopia. Sustainable Water Resources Management, 7(6), 1–11. https://doi.org/10.1007/s40899-021-00573-1
  • Doliso, B. D., & Hatiye, S. D. (2021). Comparative performance evaluation of HEC-HMS and SWAT models in stream flow simulation: The case of Bilate and Gidabo Watersheds, Ethiopia. Ethiopian Journal of Water Science and Technology, 4, 90–122. https://doi.org/10.59122/xc8543210
  • Edamo, M. L., Bushira, K. M., Ukumo, T. Y., Ayele, M. A., Alaro, M. A., & Borko, H. B. (2022). Effect of climate change on water availability in Bilate catchment, Southern Ethiopia. Water Cycle, 3(December 2021), 86–99. https://doi.org/10.1016/j.watcyc.2022.06.001
  • Elsanabary, M. H., & Gan, T. Y. (2015). Evaluation of climate anomalies impacts on the Upper Blue Nile Basin in Ethiopia using a distributed and a lumped hydrologic model. Journal of Hydrology, 530, 225–240. https://doi.org/10.1016/j.jhydrol.2015.09.052
  • Eshete, D. G., Rigler, G., Shinshaw, B. G., Belete, A. M., & Bayeh, B. A. (2022). Evaluation of streamflow response to climate change in the data-scarce region, Ethiopia. Sustainable Water Resources Management, 8(6), 1–16. https://doi.org/10.1007/s40899-022-00770-6
  • Faiz, N. M., Cortes, A. L., Guy, J. S., Reddy, S. M., & Gimeno, I. M. (2018). Differential attenuation of Marek’s disease virus-induced tumours and late-Marek’s disease virus-induced immunosuppression. The Journal of General Virology, 99(7), 927–936. https://doi.org/10.1099/jgv.0.001076
  • Fanta, S. S., & Sime, C. H. (2022). Performance assessment of SWAT and HEC-HMS model for runoff simulation of Toba watershed, Ethiopia. Sustainable Water Resources Management, 8(1), 1–16. https://doi.org/10.1007/s40899-021-00596-8
  • Farfán, J. F., Palacios, K., Ulloa, J., & Avilés, A. (2020). A hybrid neural network-based technique to improve the flow forecasting of physical and data-driven models : Methodology and case studies in Andean watersheds. Journal of Hydrology: Regional Studies, 27(December 2019), 100652. https://doi.org/10.1016/j.ejrh.2019.100652
  • Fentaw, F., Hailu, D., Nigussie, A., & Melesse, A. M. (2018). Climate change impact on the hydrology of Tekeze Basin, Ethiopia: Projection of rainfall-runoff for future water resources planning. Water Conservation Science and Engineering, 3(4), 267–278. https://doi.org/10.1007/s41101-018-0057-3
  • Ferreira, R. G., da Silva, D. D., Elesbon, A. A. A., Fernandes-Filho, E. I., Veloso, G. V., de Souza Fraga, M., & Ferreira, L. B. (2021). Machine learning models for streamflow regionalization in a tropical watershed. Journal of Environmental Management, 280, 111713. https://doi.org/10.1016/j.jenvman.2020.111713
  • Fita, T., & Abate, B. (2022). Impact of climate change on stream flow of Melka Wakena catchment, Upper Wabi Shebelle sub-basin, south-eastern Ethiopia. Journal of Water and Climate Change, 13(5), 1995–2010. https://doi.org/10.2166/wcc.2022.191
  • Fniguire, F., Laftouhi, N. E., Al-Mahfadi, A. S., El Himer, H., Khalil, N., & Saidi, M. E. (2022). Hydrological modelling using the distributed hydrological model CEQUEAU in a semi-arid mountainous area: a case study of Ourika watershed, Marrakech Atlas, Morocco. Euro-Mediterranean Journal for Environmental Integration, 7(1), 89–102. https://doi.org/10.1007/s41207-021-00287-y
  • Fouchal, A., & Souag, D. (2019). Long ‑ term monthly streamflow forecasting in humid and semiarid regions. Acta Geophysica, 67(4), 1223–1240. https://doi.org/10.1007/s11600-019-00312-3
  • Fowler, K., Peel, M., Western, A., & Zhang, L. (2018). Improved rainfall-runoff calibration for drying climate: Choice of objective function. Water Resources Research, 54(5), 3392–3408. https://doi.org/10.1029/2017WR022466
  • Gao, C., Yao, M. T., Wang, Y. J., Zhai, J. Q., Buda, S., Fischer, T., Zeng, X. F., Yao, M. T., Wang, Y. J., Zhai, J. Q., Buda, S., Fischer, T., & Zeng, X. F. (2016). Hydrological model comparison and assessment: Criteria from catchment scales and temporal resolution. Hydrological Sciences Journal, 61(10), 1–11. https://doi.org/10.1080/02626667.2015.1057141
  • Gao, J., Holden, J., & Kirkby, M. (2017). Modelling impacts of agricultural practice on flood peaks in upland catchments: An application of the distributed TOPMODEL. Hydrological Processes, 31(23), 4206–4216. https://doi.org/10.1002/hyp.11355
  • Gebre, S. L. (2015). Application of the HEC-HMS model for runoff simulation of Upper Blue Nile Hydrology: Current research application of the HEC-HMS model for runoff simulation of Upper Blue Nile River Basin. March. https://doi.org/10.4172/2157-7587.1000199
  • Gebre, S. L., & Ludwig, F. (2017). Hydrological response to climate change of the Upper Blue Nile River Basin: Climatology & weather forecasting hydrological response to climate change of the Upper Blue Nile River Basin: Based on IPCC Fifth Assessment Report (AR5). Climatology and Weather Forecasting, 3(1), 1–15. https://doi.org/10.4172/2332-2594.1000121
  • Gebrechorkos, S. H., Bernhofer, C., & Hülsmann, S. (2020). Climate change impact assessment on the hydrology of a large river basin in Ethiopia using a local-scale climate modelling approach. The Science of the Total Environment, 742, 140504. https://doi.org/10.1016/j.scitotenv.2020.140504
  • Gebremeskel, G., & Kebede, A. (2018). Estimating the effect of climate change on water resources: Integrated use of climate and hydrological models in the Werii watershed of the Tekeze river basin, Northern Ethiopia. Agriculture and Natural Resources, 52(2), 195–207. https://doi.org/10.1016/j.anres.2018.06.010
  • Gebremichael, H. B., Raba, G. A., Beketie, K. T., Feyisa, G. L., & Anose, F. A. (2023). Projection of hydrological responses to changing future climate of Upper Awash Basin using QSWAT model. Environmental Systems Research, 12(1), 25. https://doi.org/10.1186/s40068-023-00305-8
  • Gelete, G., Nourani, V., Gokcekus, H., & Gichamo, T. (2023). Ensemble physically based semi-distributed models for the rainfall-runoff process modeling in the data-scarce Katar catchment, Ethiopia. Journal of Hydroinformatics, 25(2), 567–592. https://doi.org/10.2166/hydro.2023.197
  • Ghosh, A., Roy, M. B., & Roy, P. K. (2022). Evaluating the performance of MIKE NAM model on rainfall–runoff in lower Gangetic floodplain, West Bengal, India. Modeling Earth Systems and Environment, 8(3), 4001–4017. https://doi.org/10.1007/s40808-021-01347-6
  • Gizaw, M. S., Biftu, G. F., Gan, T. Y., Moges, S. A. & Koivusalo, H. (2021). Potential impact of climate change on streamflow of major Ethiopian rivers. Climate Change, 143, 371–383. https://doi.org/10.1007/s10584-017-2021-1
  • Glick, R., Jeong, J., Srinivasan, R., Arnold, J. G., & Her, Y. (2023). Adaptation of SWAT watershed model for stormwater management in urban catchments: Case study in Austin, Texas. Water, 15(9), 1770. https://doi.org/10.3390/w15091770
  • Golmohammadi, G., Prasher, S., Madani, A., & Rudra, R. (2014). Evaluating three hydrological distributed watershed models: MIKE-SHE, APEX, SWAT. Hydrology, 1(1), 20–39. https://doi.org/10.3390/hydrology1010020
  • Gumindoga, W., Rientjes, T. H. M., Haile, A. T., & Dube, T. (2014). Predicting streamflow for land cover changes in the Upper Gilgel Abay River Basin, Ethiopia: A TOPMODEL based approach. Journal of Physics and Chemistry of the Earth, 76–78, 3–15. https://doi.org/10.1016/j.pce.2014.11.012
  • Haleem, K., Khan, A. U., Ahmad, S., Khan, M., Khan, F. A., Khan, W., & Khan, J. (2022). Hydrological impacts of climate and land-use change on flow regime variations in upper Indus basin. Journal of Water and Climate Change, 13(2), 758–770. https://doi.org/10.2166/wcc.2021.238
  • Hasan, M. M., Strong, C., Brooks, P. D., Burian, S. J., & Barber, M. E. (2023). Quantifying climate change impacts on low flows of small high mountain watersheds: A nonstationary approach. Journal of Hydrology: Regional Studies, 48(January 2022), 101463. https://doi.org/10.1016/j.ejrh.2023.101463
  • Haznedar, B., Cagan, H., Furkan, K., & Adem, O. (2023). Streamflow forecasting using a hybrid LSTM ‑ PSO approach: The case of Seyhan Basin. Natural Hazards, 117(1), 681–701. https://doi.org/10.1007/s11069-023-05877-3
  • Haznedar, B., & Kilinc, H. C. (2022). A hybrid ANFIS-GA approach for estimation of hydrological time series. Water Resources Management, 36(12), 4819–4842. https://doi.org/10.1007/s11269-022-03280-4
  • He, S., Gu, L., Tian, J., Deng, L., Yin, J., Liao, Z., Zeng, Z., & Shen, Y. (2021). Machine learning improvement of streamflow simulation by utilizing remote sensing data and potential application in guiding reservoir operation. Sustainability, 13(7), 3645. https://doi.org/10.3390/su13073645
  • Himanshu, S. K., Pandey, A., Madolli, M. J., Palmate, S. S., Kumar, A., Patidar, N., & Yadav, B. (2023). An ensemble hydrologic modeling system for runoff and evapotranspiration evaluation over an agricultural watershed. Journal of the Indian Society of Remote Sensing, 51(1), 177–196. https://doi.org/10.1007/s12524-022-01634-4
  • Horan, R., Gowri, R., Wable, P. S., Baron, H., Keller, V. D. J., Mujumdar, P. P., Gwyn, R., Houghton-Carr, H., & Rees, G. (2018). Multi-model approaches for improving seasonal ensemble streamflow prediction scheme with various statistical post-processing techniques in the Canadian Prairie Region. Water, 10(11), 1604. https://doi.org/10.3390/w10111604
  • Hu, C., Wu, Q., Li, H., Jian, S., Li, N., & Lou, Z. (2018). Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water, 10(11), 1543. https://doi.org/10.3390/w10111543
  • Huang, T., Yu, D., Cao, Q., & Qiao, J. (2019). Impacts of meteorological factors and land use pattern on hydrological elements in a semi-arid basin. The Science of the Total Environment, 690(19), 932–943. https://doi.org/10.1016/j.scitotenv.2019.07.068
  • Hussain, D., & Khan, A. A. (2020). Machine learning techniques for monthly river flow forecasting of Hunza River, Pakistan. Earth Science Informatics, 13(3), 939–949. https://doi.org/10.1007/s12145-020-00450-z
  • Ibrahim, U. A., Dan’azumi, S., Bdliya, H. H., Bunu, Z., & Chiroma, M. J. (2022). Comparison of WEAP and SWAT models for streamflow prediction in the Hadejia-Nguru Wetlands, Nigeria. Modeling Earth Systems and Environment, 8(4), 4997–5010. https://doi.org/10.1007/s40808-022-01435-1
  • Islam, K. I., Elias, E., Carroll, K. C., & Brown, C. (2023). Exploring random forest machine learning and remote sensing data for streamflow prediction: An alternative approach to a process-based hydrologic modeling in a snowmelt-driven watershed. Remote Sensing, 15(16), 3999. https://doi.org/10.3390/rs15163999
  • Islam, Z., & Gan, T. Y. (2015). Potential combined hydrologic impacts of climate change and El Nino southern oscillation to South Saskatchewan River Basin. Journal of Hydrology, 523, 34–48. https://doi.org/10.1016/j.jhydrol.2015.01.043
  • Ismail Dhaqane, A., Murshed, M. F., Mourad, K. A., & Abd Manan, T. S. B. (2023). Assessment of the streamflow and evapotranspiration at Wabiga Juba Basin using a water evaluation and planning (WEAP) model. Water, 15(14), 2594. https://doi.org/10.3390/w15142594
  • Jackson, E. K., Roberts, W., Nelsen, B., Williams, G. P., Nelson, E. J., & Ames, D. P. (2019). Introductory overview: Error metrics for hydrologic modelling – A review of common practices and an open source library to facilitate use and adoption. Environmental Modelling & Software, 119, 32–48. https://doi.org/10.1016/j.envsoft.2019.05.001
  • Janabi, F. A., Ongdas, N., Bernhofer, C., Reyes Silva, J. D., Benisch, J., & Krebs, P. (2021). Assessment of topkapi-x applicability for flood events simulation in two small catchments in saxony. Hydrology, 8(3), 109. https://doi.org/10.3390/hydrology8030109
  • Januário, T. E., Pereira Filho, A. J., & Salviano, M. F. (2022). Hydrometeorological modeling of Limpopo River Basin in Mozambique with TOPMODEL and remote sensing. Open Journal of Modern Hydrology, 12(02), 55–73. https://doi.org/10.4236/ojmh.2022.122004
  • Jehanzaib, M., Ajmal, M., Achite, M., & Kim, T. W. (2022). Comprehensive review: Advancements in rainfall-runoff modelling for flood mitigation. Climate, 10(10), 147. https://doi.org/10.3390/cli10100147
  • Jiang, Y., Liu, C., Li, X., Liu, L., & Wang, H. (2015). Rainfall-runoff modeling, parameter estimation and sensitivity analysis in a semiarid catchment. Environmental Modelling & Software, 67, 72–88. https://doi.org/10.1016/j.envsoft.2015.01.008
  • Jimeno-Sáez, P., Senent-Aparicio, J., Pérez-Sánchez, J., & Pulido-Velazquez, D. (2018). A comparison of SWAT and ANN models for daily runoff simulation in different climatic zones of peninsular Spain. Water, 10(2), 192. https://doi.org/10.3390/w10020192
  • Jodar-Abellan, A., Valdes-Abellan, J., Pla, C., & Gomariz-Castillo, F. (2019). Impact of land use changes on flash flood prediction using a sub-daily SWAT model in five Mediterranean ungauged watersheds (SE Spain). The Science of the Total Environment, 657, 1578–1591. https://doi.org/10.1016/j.scitotenv.2018.12.034
  • Kahsay, K. D., Pingale, S. M., & Hatiye, S. D. (2017). Impact of climate change on groundwater recharge and base flow in the Sub_Catchment of Tekeze Basin, Ethiopia. Groundwater for Sustainable Development, 6, 121–133. https://doi.org/10.1016/j.gsd.2017.12.002
  • Kaleris, V., & Langousis, A. (2017). Comparison of two rainfall – runoff models: Effects of conceptualization on water budget components. Hydrological Sciences Journal, 62(5), 729–748. https://doi.org/10.1080/02626667.2016.1250899
  • Kamilia, M., Tarik, C., Lmahfoud, A., & Mohamed, T. (2024). Assessing hydrological response to future climate change in the Bouregreg watershed, Morocco. Scientific African, 23, e02046. https://doi.org/10.1016/j.sciaf.2023.e02046
  • Kanishka, G., & Eldho, T. I. (2020). Streamflow estimation in ungauged basins using watershed classification and regionalization techniques. Journal of Earth System Science, 129(1), 186. https://doi.org/10.1007/s12040-020-01451-8
  • Kapoor, A., Pathiraja, S., Marshall, L., & Chandra, R. (2023). DeepGR4J: A deep learning hybridization approach for conceptual rainfall-runoff modelling. Environmental Modelling & Software, 169(September), 105831. https://doi.org/10.1016/j.envsoft.2023.105831
  • Karam, S., Zango, B., Seidou, O., Perera, D., Nagabhatla, N., & Tshimanga, R. M. (2023). Impacts of climate change on hydrological regimes in the Congo River Basin. Sustainability, 15(7), 6066. –https://doi.org/10.3390/su15076066
  • Kassem, A. A., Raheem, A. M., Khidir, K. M., & Alkattan, M. (2020). Predicting of daily Khazir basin flow using SWAT and hybrid SWAT-ANN models. Ain Shams Engineering Journal, 11(2), 435–443. https://doi.org/10.1016/j.asej.2019.10.011
  • Kavian, A., Javidan, N., Bahrehmand, A., Gyasi, Y., Hazbavi, Z., & Rodrigo-Comino, J. (2020). Assessing the hydrological effects of land-use changes on a catchment using the Markov chain and WetSpa models. Hydrological Sciences Journal, 65(15), 2604–2615. https://doi.org/10.1080/02626667.2020.1797046
  • Ketema, A., & Dwarakish, G. S. (2021). Hydro-meteorological impact assessment of climate change on Tikur Wuha watershed in Ethiopia. Sustainable Water Resources Management, 7(4), 1–20. https://doi.org/10.1007/s40899-021-00547-3
  • Khan, M., Khan, A. U., Khan, S., & Khan, F. A. (2023). Assessing the impacts of climate change on stream flow dynamics : A machine learning perspective. Water Science & Technology, 88(9), 2309–2331. https://doi.org/10.2166/wst.2023.340
  • Khan, S., Khan, A. U., Khan, M., Khan, F. A., Khan, S., & Khan, J. (2023). Intercomparison of SWAT and ANN techniques in simulating stream flows in the Astore Basin of the Upper Indus Sunaid Khan. Water Science & Technology, 88(7), 1847–1862. https://doi.org/10.2166/wst.2023.299
  • Khattati, M., Serroukh, M., Rafik, I., & Mesmoudi, H. (2016). Hydrological Modelling of Sidi Jabeur watershed (Morocco) using spatially distributed model ATHYS. Journal of Geoscience and Environment Protection, 4(1), 77–83.
  • Khazaee Poul, A., Shourian, M., & Ebrahimi, H. (2019). A comparative study of MLR, KNN, ANN and ANFIS models with wavelet transform in monthly stream flow prediction. Water Resources Management, 33(8), 2907–2923. https://doi.org/10.1007/s11269-019-02273-0
  • Khodakhah, H., Aghelpour, P., & Hamedi, Z. (2022). Comparing linear and non ‑ linear data ‑ driven approaches in monthly river flow prediction, based on the models SARIMA, LSSVM, ANFIS, and GMDH. Environmental Science and Pollution Research, 29(15), 21935–21954. https://doi.org/10.1007/s11356-021-17443-0
  • Khoi, N. (2016). Comparision of the Hec-Hms and Swat hydrological models in simulating the streamflow. Journal of Science and Technology, 53(5A), 189–195.
  • Kilinc, H. C. (2022). Daily streamflow forecasting based on the hybrid particle swarm optimization and long short-term memory model in the Orontes Basin. Water, 14(3), 490. https://doi.org/10.3390/w14030490
  • Kilinc, H. C., & Haznedar, B. (2022). A hybrid model for streamflow forecasting in the Basin of Euphrates. Water, 14(1), 80. https://doi.org/10.3390/w14010080
  • Koch, H., Lígia, A., Silva, C., Liersch, S., Roberto, J., Azevedo, G. D., & Hattermann, F. F. (2020). Effects of model calibration on hydrological and water resources management simulations under climate change in a semi-arid watershed. Climatic Change, 163, 1247–1266.
  • Kouchi, D. H., Esmaili, K., Faridhosseini, A., Sanaeinejad, S. H., Khalili, D., & Abbaspour, K. C. (2017). Sensitivity of calibrated parameters and water resource estimates on different objective functions and optimization algorithms. Water, 9(6), 384. https://doi.org/10.3390/w9060384
  • Krysanova, V., & Wechsung, F. (2022). The soil and water integrated model (SWIM) user manual. https://www.pik-potsdam.de/∼wortmann/swim/swim_manual.pdf
  • Kuma, H. G., Feyessa, F. F., & Demissie, T. A. (2021). Hydrologic responses to climate and land-use/land-cover changes in the Bilate. Journal of Water and Climate Change, 12(8), 3750–3769. https://doi.org/10.2166/wcc.2021.281
  • Kumar, D., & Bhattacharjya, R. K. (2020). Review of different methods and techniques used for flood vulnerability analysis. Natural Hazards and Earth System Sciences Discussions, 1–30. https://doi.org/10.5194/nhess-2020-297
  • Kumar, K. S., Galkate, R. V., & Tiwari, H. L. (2021). River basin modelling for Shipra River using MIKE BASIN. ISH Journal of Hydraulic Engineering, 27(2), 188–199. https://doi.org/10.1080/09715010.2018.1534219
  • Kumar, R., Huda, M. B., Maryam, M., & Lone, M. A. (2022). Rainfall runoff modeling using MIKE 11 NAM of the Jhelum river in Kashmir Valley, India. MAUSAM, 73(2), 365–372. https://doi.org/10.54302/mausam.v73i2.804
  • Kumar, V., Azamathulla, H. M., Sharma, K. V., Mehta, D. J., & Maharaj, K. T. (2023). The state of the art in deep learning applications, challenges, and future prospects: A comprehensive review of flood forecasting and management. Sustainability, 15(13), 10543. https://doi.org/10.3390/su151310543
  • Kunnath-Poovakka, A., & Eldho, T. I. (2019). A comparative study of conceptual rainfall-runoff models GR4J, AWBM and Sacramento at catchments in the upper Godavari river basin, India. Journal of Earth System Science, 128(2), 1–15. https://doi.org/10.1007/s12040-018-1055-8
  • Kurian, C., Sudheer, K. P., Krishna, V., & Sahoo, D. (2020). Effective flood forecasting at higher lead times through hybrid modelling framework. Journal of Hydrology, 587(April), 124945. https://doi.org/10.1016/j.jhydrol.2020.124945
  • Lafdani, E. K., Nia, A. M., Ahmadi, A., Jajarmizadeh, M., Ghafari, M., & Neural, A. (2013). Short communication stream flow simulation using SVM, ANFIS and NAM models (a case study). Caspian Journal of Applied Sciences Research, 2(4), 86–93.
  • Lakew, H. B. (2020). Investigating the effectiveness of bias correction and merging MSWEP with gauged rainfall for the hydrological simulation of the upper Blue Nile basin. Journal of Hydrology: Regional Studies, 32(October), 100741. https://doi.org/10.1016/j.ejrh.2020.100741
  • Lamontagne, J. R., Barber, C. A., & Vogel, R. M. (2020). Improved estimators of model performance efficiency for skewed hydrologic data. Water Resources Research, 56(9), 1–25. https://doi.org/10.1029/2020WR027101
  • Laura, R., Lay, L., Federico, G., Moine, L., Frédéric, H., Céline, M., & Pierre, R. (2017). Impact of mesoscale spatial variability of climatic inputs and parameters on the hydrological response. Journal of Hydrology, 553, 13–25. https://doi.org/10.1016/j.jhydrol.2017.07.037
  • Lavenne, A. D., Thirel, G., Andréassian, V., Perrin, C., Ramos, M., & Cedex, A. (2016). Spatial variability of the parameters of a semi-distributed hydrological model. Proceedings of the International Association of Hydrological Sciences, 373, 87–94. https://doi.org/10.5194/piahs-373-87-2016
  • Lee, J. S., & Choi, H. I. (2021). Improved streamflow calibration of a land surface model by the choice of objective functions-a case study of the Nakdong river watershed in the Korean peninsula. Water (Switzerland), 13(12), 1709. https://doi.org/10.3390/w13121709
  • Leila, N., Mahtabi, G., Seyyed, H. H., & Venkata, S. R. (2024). Hydrological responses to future climate change in semi-arid region of Iran (Golabar and Taham Basins, Zanjan Province). Results in Engineering, 21, 101871. https://doi.org/10.1016/j.rineng.2024.101871
  • Li, C., Cai, Y., Li, Z., Zhang, Q., Sun, L., Li, X., & Zhou, P. (2022). Hydrological response to climate and land use changes in the dry–warm valley of the Upper Yangtze River. Engineering, 19, 24–39. https://doi.org/10.1016/j.eng.2021.04.029
  • Li, F., Xu, Z., Liu, W., & Zhang, Y. (2014). The impact of climate change on runoff in the Yarlung Tsangpo River basin in the Tibetan Plateau. Stochastic Environmental Research and Risk Assessment, 28(3), 517–526. https://doi.org/10.1007/s00477-013-0769-z
  • Li, Z., Yu, J., Xu, X., Sun, W., Pang, B., & Yue, J. (2018). Multi-model ensemble hydrological simulation using a BP Neural Network for the upper Yalongjiang River Basin, China. Proceedings of the International Association of Hydrological Sciences, 379, 335–341. https://doi.org/10.5194/piahs-379-335-2018
  • Lin, Y., Wen, H., & Liu, S. (2019). Surface runoff response to climate change based on artificial neural network (ANN) models: A case study with Zagunao catchment in Upper Minjiang River, Southwest China. Journal of Water and Climate Change, 10(1), 158–166. https://doi.org/10.2166/wcc.2018.130
  • Liu, J., Liu, T., Bao, A., De Maeyer, P., Feng, X., Miller, S. N., & Chen, X. (2016). Assessment of different modelling studies on the spatial hydrological processes in an Arid Alpine catchment. Water Resources Management, 30(5), 1757–1770. https://doi.org/10.1007/s11269-016-1249-2
  • Liu, Y., Zhang, J., Yang, Q., Zhou, X., & Wang, G. (2021). Changes in and modelling of hydrological process for a semi-arid catchment in the context of human disturbance. Frontiers in Earth Science, 9(September 2021), 1–11. https://doi.org/10.3389/feart.2021.759534
  • Ludwig, P., Ehmele, F., Franca, M. J., Mohr, S., Caldas-Alvarez, A., Daniell, J. E., Ehret, U., Feldmann, H., Hundhausen, M., Knippertz, P., Küpfer, K., Kunz, M., Mühr, B., Pinto, J. G., Quinting, J., Schäfer, A. M., Seidel, F., & Wisotzky, C. (2023).). A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe – Part 2: Historical context and relation to climate change. Natural Harzards and Earth System Sciences, 23(2), 1287–1311.
  • Ma, J., Sun, W., Yang, G., & Zhang, D. (2018). Hydrological analysis using satellite remote sensing big data and CREST model. IEEE Access, 6, 9006–9016. https://doi.org/10.1109/ACCESS.2018.2810252
  • Ma, L., He, C., Bian, H., & Sheng, L. (2022). MIKE SHE modeling of ecohydrological processes: Merits, applications, and challenges. Ecological Engineering, 96, 137–149. https://doi.org/10.1016/j.ecoleng.2016.01.008
  • Mai, J., Arsenault, R., Tolson, B. A., Latraverse, M., & Demeester, K. (2020). Application of parameter screening to derive optimal initial state adjustments for streamflow forecasting. Water Resources Research, 56(9), 1–22. https://doi.org/10.1029/2020WR027960
  • Malik, M. A., Dar, A. Q., & Jain, M. K. (2022). Modelling streamflow using the SWAT model and multi-site calibration utilizing SUFI-2 of SWAT-CUP model for high altitude catchments, NW Himalaya’s. Modeling Earth Systems and Environment, 8(1), 1203–1213. https://doi.org/10.1007/s40808-021-01145-0
  • Martel, J., Brissette, F., & Arsenault, R. (2017). HMETS—A simple and efficient hydrology model for teaching hydrological modelling, flow forecasting and climate change impacts. International Journal of Engineering Education, 33(4), 1307–1316.
  • Mekonnen, H., Surendra, A., Mishra, K., & Kumar, M. (2023). Assessing the impact of climate change on the hydrology of Gidabo River sub ‑ basin, Ethiopian Rift Valley Lakes Basin. Sustainable Water Resources Management, 9(3), 1–18. https://doi.org/10.1007/s40899-023-00858-7
  • Mekonnen, S., Dessie, M., Tadesse, A., Nega, H., & Zewdu, A. (2023). Predicting the daily flow in ungauged catchments of the eastern part of the upper Blue Nile basin, Ethiopia. Sustainable Water Resources Management, 9(3), 71. https://doi.org/10.1007/s40899-023-00856-9
  • Meresa, H. K., & Gatachew, M. T. (2019). Climate change impact on river flow extremes in the Upper Blue Nile River basin. Journal of Water and Climate Change, 10(4), 759–781. https://doi.org/10.2166/wcc.2018.154
  • Merga, D. D., Adeba, D., Regasa, M. S., & Leta, M. K. (2022). Evaluation of surface water resource availability under the impact of climate change in the Dhidhessa Sub-Basin, Ethiopia. Atmosphere, 13(8), 1296. https://doi.org/10.3390/atmos13081296
  • Moges, M. A., Schmitter, P., Tilahun, S. A., Langan, S., Dagnew, D. C., Akale, A. T., & Steenhuis, T. S. (2017). Suitability of watershed models to predict distributed hydrologic response in the Awramba Watershed in Lake Tana Basin. Land Degradation & Development, 28(4), 1386–1397. https://doi.org/10.1002/ldr.2608
  • Mohammadi, B., Safari, M. J. S., & Vazifehkhah, S. (2022). OPEN IHACRES, GR4J and MISD ‑ based multi conceptual ‑ machine learning approach for rainfall ‑ runoff modeling. Scientific Reports, 12(1), 12096. https://doi.org/10.1038/s41598-022-16215-1
  • Mohammady, M., Moradi, H. R., Zeinivand, H., Temme, A. J. A. M., Yazdani, M. R., & Pourghasemi, H. R. (2018). Modeling and assessing the effects of land use changes on runoff generation with the CLUE-s and WetSpa models. Theoretical and Applied Climatology, 133(1–2), 459–471. https://doi.org/10.1007/s00704-017-2190-x
  • Mosbahi, M., & Benabdallah, S. (2020). Assessment of land management practices on soil erosion using SWAT model in a Tunisian semi-arid catchment. Journal of Soils and Sediments, 20(2), 1129–1139. https://doi.org/10.1007/s11368-019-02443-y
  • Mouche, E., Moussu, F., Mügler, C., Ribolzi, O., Valentin, C., Sengtahevanghoung, O., & Lacombe, G. (2014). Impact of land-use change on the hydrology of North Lao PDR watersheds. IAHS-AISH Proceedings and Reports, 363, 84–89.
  • Mubialiwo, A., Abebe, A., & Onyutha, C. (2021). Performance of rainfall–runoff models in reproducing hydrological extremes: a case of the River Malaba sub-catchment. SN Applied Sciences, 3(4), 515. https://doi.org/10.1007/s42452-021-04514-7
  • Muhury, N., Ayele, G. T., Balcha, S. K., Jemberie, M. A., & Teferi, E. (2023). Basin runoff responses to climate change using a rainfall-runoff hydrological model in Southeast Australia. Atmosphere, 14(2), 306. https://doi.org/10.3390/atmos14020306
  • Munoth, P., & Goyal, R. (2020). Hydromorphological analysis of Upper Tapi River Sub-basin, India, using QSWAT model. Modeling Earth Systems and Environment, 6(4), 2111–2127. https://doi.org/10.1007/s40808-020-00821-x
  • Naha, S., Rico-Ramirez, M. A., & Rosolem, R. (2021). Quantifying the impacts of land cover change on hydrological responses in the Mahanadi river basin in India. Hydrology and Earth System Sciences, 25(12), 6339–6357. https://doi.org/10.5194/hess-25-6339-2021
  • Nannawo, A. S., Lohani, T. K., Eshete, A. A., & Ayana, M. T. (2022). Evaluating the dynamics of hydroclimate and streamflow for data-scarce areas using MIKE11-NAM model in Bilate river basin, Ethiopia. Modeling Earth Systems and Environment, 8(4), 4563–4578. https://doi.org/10.1007/s40808-022-01455-x
  • Narsimlu, B., Gosain, A. K., Chahar, B. R., Singh, S. K., & Srivastava, P. K. (2015). SWAT model calibration and uncertainty analysis for streamflow prediction in the Kunwari River Basin, India, using sequential uncertainty fitting. Environmental Processes, 2(1), 79–95. https://doi.org/10.1007/s40710-015-0064-8
  • Nayeb, M., Ketabchy, M., Sample, D. J., Scott, D., & Liao, H. (2019). An evaluation of HSPF and SWMM for simulating streamflow regimes in an urban watershed. Environmental Modelling & Software, 118(March), 211–225. https://doi.org/10.1016/j.envsoft.2019.05.008
  • Ndhlovu, G. Z., & Woyessa, Y. E. (2021). Evaluation of streamflow under climate change in the Zambezi river basin of Southern Africa. Water, 13(21), 3114. https://doi.org/10.3390/w13213114
  • Nesru, M. (2023). A review of model selection for hydrological studies. Arabian Journal of Geosciences, 16(2), 102. https://doi.org/10.1007/s12517-023-11194-7
  • Nguyen, S., & Bouvier, C. (2019). Flood modelling using the distributed event-based SCS-LR model in the Mediterranean Real Collobrier catchment. Hydrological Sciences Journal, 64(11), 1351–1369. https://doi.org/10.1080/02626667.2019.1639715
  • Nilawar, A. P., & Waikar, M. L. (2018). Use of SWAT to determine the effects of climate and land use changes on streamflow and sediment concentration in the Purna River basin, India. Environmental Earth Sciences, 77(23), 1–13. https://doi.org/10.1007/s12665-018-7975-4
  • Ning, Z., Zhang, J., Yuan, S., & Wang, G. (2022). Impact of climate change on water resources in the western route areas of the South-to-North water diversion project. Atmosphere, 13(5), 799.
  • Nivesh, S., Patil, J. P., Goyal, V. C., Saran, B., Singh, A. K., Raizada, A., Malik, A., & Kuriqi, A. (2022). Assessment of future water demand and supply using WEAP model in Dhasan River Basin, Madhya Pradesh, India. Environmental Science and Pollution Research, 30(10), 27289–27302. https://doi.org/10.1007/s11356-022-24050-0
  • Noori, N., & Kalin, L. (2016). Coupling SWAT and ANN models for enhanced daily streamflow prediction. Journal of Hydrology, 533, 141–151. https://doi.org/10.1016/j.jhydrol.2015.11.050
  • Nourali, M., Ghahraman, B., Pourreza-Bilondi, M., & Davary, K. (2016). Effect of formal and informal likelihood functions on uncertainty assessment in a single event rainfall-runoff model. Journal of Hydrology, 540, 549–564. https://doi.org/10.1016/j.jhydrol.2016.06.022
  • Nuri, M., & Abdüsselam, B. (2020). The impacts of climate change on the runoff volume of Melen and Munzur Rivers in Turkey based on calibration of WASMOD model with multiobjective genetic algorithm. Meteorology and Atmospheric Physics, 132(1), 85–98. https://doi.org/10.1007/s00703-019-00676-7
  • Ocio, D., Beskeen, T., & Smart, K. (2020). Fully distributed hydrological modelling for catchment-wide hydrological data verification. Hydrology Research, 50(6), 1520–1534. https://doi.org/10.2166/nh.2019.006
  • Okiria, E., Okazawa, H., Noda, K., Kobayashi, Y., Suzuki, S., & Yamazaki, Y. (2022). A comparative evaluation of lumped and semi-distributed conceptual hydrological models: Does model complexity enhance hydrograph prediction? Hydrology, 9(5), 89. https://doi.org/10.3390/hydrology9050089
  • Okkan, U., Beril, Z., Ali, A., & Fistikoglu, O. (2021). Embedding machine learning techniques into a conceptual model to improve monthly runoff simulation: A nested hybrid rainfall-runoff modeling. Journal of Hydrology, 598(May), 126433. https://doi.org/10.1016/j.jhydrol.2021.126433
  • Olaoye, I. A., Confesor, R. B., & Ortiz, J. D. (2021). Impact of seasonal variation in climate on water quality of old woman creek watershed Ohio using swat. Climate, 9(3), 50. https://doi.org/10.3390/cli9030050
  • Onyutha, C. (2019). Hydrological model supported by a step-wise calibration against sub-flows and validation of extreme flow events. Water, 11(2), 244. https://doi.org/10.3390/w11020244
  • Onyutha, C., Amollo, C. J., Nyende, J., & Nakagiri, A. (2021). Suitability of averaged outputs from multiple rainfall-runoff models for hydrological extremes: a case of River Kafu catchment in East Africa. International Journal of Energy and Water Resources, 5(1), 43–56. https://doi.org/10.1007/s42108-020-00075-4
  • Orkodjo, T. P., Kranjac-Berisavijevic, G., & Abagale, F. K. (2022). Impact of climate change on future precipitation amounts, seasonal distribution, and streamflow in the Omo-Gibe basin, Ethiopia. Heliyon, 8(6), e09711. https://doi.org/10.1016/j.heliyon.2022.e09711
  • Osman, S., Chen, L., Hafiz, A., Xing, L., & Chen, Y. (2021). Flood modeling of Sungai Pinang Watershed under the impact of urbanization. Tropical Cyclone Research and Review, 10(2), 96–105. https://doi.org/10.1016/j.tcrr.2021.06.001
  • Paul, M., & Negahban-Azar, M. (2018). Sensitivity and uncertainty analysis for streamflow prediction using multiple optimization algorithms and objective functions: San Joaquin Watershed, California. Modeling Earth Systems and Environment, 4(4), 1509–1525. https://doi.org/10.1007/s40808-018-0483-4
  • Lucas‐Picher, P., Arsenault, R., Poulin, A., Ricard, S., Lachance‐Cloutier, S., & Turcotte, R. (2020). Application of a high ‐ resolution distributed hydrological model on a U. S. ‐ Canada Transboundary Basin: Simulation of the multiyear mean annual hydrograph and 2011 flood of the Richelieu river basin journal of advances in modeling earth systems. Journal of Advances in Modeling Earth Systems, 12(4), 1–20. https://doi.org/10.1029/2019MS001709
  • Poonia, V., & Tiwari, H. L. (2020). Rainfall-runoff modeling for the Hoshangabad Basin of Narmada River using artificial neural network. Arabian Journal of Geosciences, 13(18), 944. https://doi.org/10.1007/s12517-020-05930-6
  • Rabba, Z. A. (2023). Flood frequency analysis with PyTOPKAPI model ‑ simulated stream flows from Aweitu river in Jimma town, Ethiopia. Sustainable Water Resources Management, 9(2), 1–14. https://doi.org/10.1007/s40899-023-00825-2
  • Rahman, K. U., Pham, Q. B., Jadoon, K. Z., Shahid, M., Kushwaha, D. P., Duan, Z., Mohammadi, B., Khedher, K. M., & Anh, D. T. (2022). Comparison of machine learning and process-based SWAT model in simulating streamflow in the Upper Indus Basin. Applied Water Science, 12(8), 1–19. https://doi.org/10.1007/s13201-022-01692-6
  • Ranjan, S., & Singh, V. (2022). HEC-HMS based rainfall-runoff model for Punpun river basin. Water Practice and Technology, 17(5), 986–1001. https://doi.org/10.2166/wpt.2022.033
  • Reddy, N. M., Saravanan, S., Almohamad, H., Al Dughairi, A. A., & Abdo, H. G. (2023). Effects of climate change on streamflow in the godavari basin simulated using a conceptual model including CMIP6 dataset. Water, 15(9), 1701. https://doi.org/10.3390/w15091701
  • Reddy, N. N., Reddy, K. V., Vani, J. S. L. S., Daggupati, P., & Srinivasan, R. (2018). Climate change impact analysis on watershed using QSWAT. Spatial Information Research, 26(3), 253–259. https://doi.org/10.1007/s41324-017-0159-6
  • Ren, W. W., Yang, T., Sheng, C., Chong, H., Xu, Y., & Xi, Q. (2018). Improving monthly streamflow prediction in alpine regions: Integrating HBV model with Bayesian neural network. Stochastic Environmental Research and Risk Assessment, 32(12), 3381–3396. https://doi.org/10.1007/s00477-018-1553-x
  • Ricci, G. F., De Girolamo, A. M., Abdelwahab, O. M. M., & Gentile, F. (2018). Identifying sediment source areas in a Mediterranean watershed using the SWAT model. Land Degradation & Development, 29(4), 1233–1248. https://doi.org/10.1002/ldr.2889
  • Ruiz-García, V. H., Asensio-Grima, C., Ramírez-García, A. G., & Monterroso-Rivas, A. I. (2023). The hydrological balance in micro-watersheds is affected by climate change and land use changes. Applied Sciences, 13(4), 2503. https://doi.org/10.3390/app13042503
  • Sahraei, S., Asadzadeh, M., & Unduche, F. (2020). Calibration of hydrologic models: Application in flood. Journal of Hydrology, 588, 125095. https://doi.org/10.1016/j.jhydrol.2020.125095
  • Sajadi Bami, Y., Porhemmat, J., Sedghi, H., & Jalalkamali, N. (2020). Performance evaluation of Mike Nam Rainfall-Runoff (R-R) model in daily flow simulation (case study: Gonbad Catchment in Hamedan). Journal of Applied Engineering Sciences, 10(1), 1–6. https://doi.org/10.2478/jaes-2020-0001
  • Sanjay Shekar, N. C., & Vinay, D. C. (2021). Performance of HEC-HMS and swat to simulate streamflow in the sub-humid tropical Hemavathi Catchment. Journal of Water and Climate Change, 12(7), 3005–3017. https://doi.org/10.2166/wcc.2021.072
  • Santos, L., Andersson, J. C. M., & Arheimer, B. (2022). Evaluation of parameter sensitivity of a rainfall- runoff model over a global catchment set. Hydrological Sciences Journal, 67(3), 342–357. https://doi.org/10.1080/02626667.2022.2035388
  • Saran, S., Sterk, G., Aggarwal, S. P., & Dadhwal, V. K. (2021). Coupling remote sensing and GIS with KINEROS2 model for spatially distributed runoff modeling in a Himalayan watershed. Journal of the Indian Society of Remote Sensing, 49(5), 1121–1139. https://doi.org/10.1007/s12524-020-01295-1
  • Sempewo, J. I., Twite, D., Nyenje, P., & Mugume, S. N. (2022). Comparison of SWAT and HEC-HMS model performance in simulating catchment runoff. Journal of Applied Water Engineering and Research, 11(4), 481–495. https://doi.org/10.1080/23249676.2022.2156401
  • Shahid, M., Cong, Z., & Zhang, D. (2018). Understanding the impacts of climate change and human activities on streamflow: a case study of the Soan River basin, Pakistan. Theoretical and Applied Climatology, 134(1-2), 205–219. https://doi.org/10.1007/s00704-017-2269-4
  • Shen, M., Chen, J., Zhuan, M., Chen, H., Xu, C., & Xiong, L. (2018). Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology. Journal of Hydrology, 556, 10–24. https://doi.org/10.1016/j.jhydrol.2017.11.004
  • Sheng, S., Chen, Q., Li, J., & Chen, H. (2023). The improved reservoir module of SWAT model with a dispatch function and its application on assessing the impact of climate change and human activities on runoff change. Water, 15(14), 2620. https://doi.org/10.3390/w15142620
  • Shrestha, N. K., Seglenieks, F., Temgoua, A. G. T., & Dehghan, A. (2022). The impacts of climate change on land hydroclimatology of the Laurentian Great Lakes Basin. Frontiers in Water, 4(July), 1–22. https://doi.org/10.3389/frwa.2022.801134
  • Sime, C. H., Demissie, T. A., & Tufa, F. G. (2020). Surface runoff modeling in Ketar watershed, Ethiopia. Journal of Sedimentary Environments, 5(1), 151–162. https://doi.org/10.1007/s43217-020-00009-4
  • Singh, D., Vardhan, M., Sahu, R., Chatterjee, D., Chauhan, P., & Liu, S. (2023). Machine-learning- and deep-learning-based streamflow prediction in a hilly catchment for future scenarios using CMIP6 GCM data. Hydrology and Earth System Sciences, 27(5), 1047–1075. https://doi.org/10.5194/hess-27-1047-2023
  • Singh, K., Mohit, R., Mohd, K., Sofi, S., Chandra, J., Sami, K., & Bhat, U. (2022). Modelling of streamflow and water balance in the Kuttiyadi River Basin using SWAT and remote sensing/GIS tools. International Journal of Environmental Research, 16(4), 1–14. https://doi.org/10.1007/s41742-022-00416-7
  • Singh, S. K., & Marcy, N. (2017). Comparison of simple and complex hydrological models for predicting catchment discharge under climate change. AIMS Geosciences, 3(3), 467–497. https://doi.org/10.3934/geosci.2017.3.467
  • Sirigu, S., & Montaldo, N. (2022). Climate change impacts on the water resources and vegetation dynamics of a forested Sardinian basin through a distributed ecohydrological model. Water, 14(19), 3078. https://doi.org/10.3390/w14193078
  • Sitotaw, R., Lulekal, E., & Abate, D. (2020). Ethnomycological study of edible and medicinal mushrooms in Menge District, Asossa zone, Benshangul Gumuz region, Ethiopia. Journal of Ethnobiology and Ethnomedicine, 16(1), 11. https://doi.org/10.1186/s13002-020-00361-9
  • Sohoulande Djebou, D. C. (2019). Streamflow drought interpreted using SWAT model simulations of past and future hydrologic scenarios: Application to Neches and Trinity River Basins, Texas. Journal of Hydrologic Engineering, 24(9), 1–12. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001827
  • Stephens, C. M., Johnson, F. M., & Marshall, L. A. (2018). Implications of future climate change for event-based hydrologic models. Advances in Water Resources, 119(March), 95–110. https://doi.org/10.1016/j.advwatres.2018.07.004
  • Su, B., Huang, J., Zeng, X., Gao, C., & Jiang, T. (2017). Impacts of climate change on streamflow in the upper Yangtze River basin. Climatic Change, 141(3), 533–546. https://doi.org/10.1007/s10584-016-1852-5
  • Sulamo, M. A., Kassa, A. K., & Roba, N. T. (2021). Evaluation of the impacts of land use/cover changes on water balance of Bilate watershed, Rift valley basin, Ethiopia. Water Practice and Technology, 16(4), 1108–1127. https://doi.org/10.2166/wpt.2021.063
  • Suliman, A. H. A., Jajarmizadeh, M., Harun, S., & Mat Darus, I. Z. (2015). Comparison of semi-distributed, GIS-based hydrological models for the prediction of streamflow in a large catchment. Water Resources Management, 29(9), 3095–3110. https://doi.org/10.1007/s11269-015-0984-0
  • Tang, X., Zhang, J., Wang, G., Jin, J., Liu, C., Liu, Y., He, R., & Bao, Z. (2021). Uncertainty analysis of swat modeling in the Lancang River Basin using four different algorithms. Water,)13(3), 341. https://doi.org/10.3390/w13030341
  • Tanksali, A., & Soraganvi, V. S. (2021). Assessment of impacts of land use/land cover changes upstream of a dam in a semi-arid watershed using QSWAT. Modeling Earth Systems and Environment, 7(4), 2391–2406. https://doi.org/10.1007/s40808-020-00978-5
  • Tegegne, G., Park, D. K., & Kim, Y. (2017). Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin. Journal of Hydrology: Regional Studies, 14(November), 49–66. https://doi.org/10.1016/j.ejrh.2017.10.002
  • Teklesadik, A. D., Alemayehu, T., van Griensven, A., Kumar, R., Liersch, S., Eisner, S., Tecklenburg, J., Ewunte, S., & Wang, X. (2017). Inter-model comparison of hydrological impacts of climate change on the Upper Blue Nile Basin using ensemble of hydrological models and global climate models. Climatic Change, 141(3), 517–532. https://doi.org/10.1007/s10584-017-1913-4
  • Temesgen, A. (2019). Rainfall - runoff modeling: A comparative analyses: Semi distributed HBV light and SWAT models in Geba catchment, Upper Tekeze Basin, Ethiopia. American Journal of Science Engineering and Technolog, 4(2), 34.
  • Teshome, F. T., Bayabil, H. K., Thakural, L. N., & Welidehanna, F. G. (2020). Modeling stream flow using SWAT model in the Bina River Basin, India. Journal of Water Resource and Protection, 12(03), 203–222. https://doi.org/10.4236/jwarp.2020.123013
  • Thapa, B. R., Ishidaira, H., Pandey, V. P., & Shakya, N. M. (2017). A multi-model approach for analyzing water balance dynamics in Kathmandu Valley, Nepal. Journal of Hydrology: Regional Studies, 9, 149–162. https://doi.org/10.1016/j.ejrh.2016.12.080
  • Thirel, G., Perrin, C., Drogue, G., Gerlinger, K., Krumm, J., & . Wagner, J. (2015). Future evolution of river discharge for the French Rhine Basin in a context of climate change - An updated evaluation based on the AR5 IPCC climate. climatique - Une évaluation actualisée s ’ appuyant sur les simulations climatiques issues du 5ème rappor. https://hal.inrae.fr/hal-02601883
  • Tian, Y., Xu, Y.-P., Ma, C., & Wang, G. (2017). Modeling the impact of climate change on low flows in Xiangjiang River Basin with Bayesian averaging method. Journal of Hydrologic Engineering, 22(9), 04017035. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001557
  • Tian, Y., Xu, Y., & Zhang, X. (2013). Assessment of climate change impacts on river high flows through comparative use of GR4J, HBV and xinanjiang models. Water Resources Management, 27(8), 2871–2888. (2013), https://doi.org/10.1007/s11269-013-0321-4
  • Tibangayuka, N., Mulungu, D. M. M., & Izdori, F. (2022). Evaluating the performance of HBV, HEC-HMS and ANN models in simulating streamflow for a data scarce high-humid tropical catchment in Tanzania. Hydrological Sciences Journal, 67(14), 2191–2204. https://doi.org/10.1080/02626667.2022.2137417
  • Topalović, Ž., Todorović, A., & Plavšić, J. (2020). Evaluating the transferability of monthly water balance models under changing climate conditions. Hydrological Sciences Journal, 65(6), 928–950. https://doi.org/10.1080/02626667.2020.1725238
  • Touseef, M., Chen, L., Masud, T., Khan, A., Yang, K., Shahzad, A., Ijaz, M. W., & Wang, Y. (2020). Assessment of the future climate change projections on Streamflow Hydrology and water availability over upper Xijiang River Basin, China. Applied Sciences, 10(11), 3671. https://doi.org/10.3390/app10113671
  • Tran, Q. Q., De Niel, J., & Willems, P. (2018). Spatially distributed conceptual hydrological model building: A generic top-down approach starting from lumped models. Water Resources Research, 54(10), 8064–8085. https://doi.org/10.1029/2018WR023566
  • Troin, M., Arsenault, R., Wood, A. W., Brissette, F., & Martel, J. (2021). Generating ensemble streamflow forecasts: A review of methods and approaches over the past 40 years water resources research. Water Resources Research, 57(7), 1–48. https://doi.org/10.1029/2020WR028392
  • Troy, B., Sarron, C., Fritsch, J. M., & Rollin, D. (2007). Assessment of the impacts of land use changes on the hydrological regime of a small rural catchment in South Africa. Physics and Chemistry of the Earth, 32(15–18), 984–994. https://doi.org/10.1016/j.pce.2007.07.049
  • Usman, M., Ndehedehe, C. E., Manzanas, R., Ahmad, B., & Adeyeri, O. E. (2021). Impacts of climate change on the hydrometeorological characteristics of the Soan River Basin, Pakistan. Atmosphere, 12(6), 792. https://doi.org/10.3390/atmos12060792
  • Uysal, E., Alavi, S., & Bezençon, V. (2023). Anthropomorphism in artificial Intelligence: A review of empirical work across domains and insights for future research. In Artificial intelligence in marketing (pp. 273–308). https://doi.org/10.1108/S1548-643520230000020015
  • Van Loon, A. F. (2015). Hydrological drought explained. WIREs Water, 2(4), 359–392. https://doi.org/10.1002/wat2.1085
  • Veettil, A. V., Green, T. R., Kipka, H., Arabi, M., Lighthart, N., Mankin, K., & Clary, J. (2021). Fully distributed versus semi-distributed process simulation of a highly managed watershed with mixed land use and irrigation return flow. Environmental Modelling & Software, 140(March), 105000. https://doi.org/10.1016/j.envsoft.2021.105000
  • Vilaysane, B., Takara, K., Luo, P., Akkharath, I., & Duan, W. (2015). Hydrological stream flow modelling for calibration and uncertainty analysis using SWAT model in the Xedone River Basin, Lao PDR. Procedia Environmental Sciences, 28, 380–390. https://doi.org/10.1016/j.proenv.2015.07.047
  • Wakigari, S. A. (2017). Evaluation of conceptual hydrological models in data scarce region of the upper Blue Nile Basin: Case of the Upper Guder Catchment. Hydrology, 4(4), 59. https://doi.org/10.3390/hydrology4040059
  • Wang, G., Zhang, J., He, R., Liu, C., Ma, T., Bao, Z., & Liu, Y. (2017). Runoff sensitivity to climate change for hydro-climatically different catchments in China. Stochastic Environmental Research and Risk Assessment, 31(4), 1011–1021. https://doi.org/10.1007/s00477-016-1218-6
  • Wang, J., Shi, P., Jiang, P., Hu, J., Qu, S., Chen, X., Chen, Y., Dai, Y., & Xiao, Z. (2017). Application of BP neural network algorithm in traditional hydrological model for flood forecasting. Water, 9(1), 48. https://doi.org/10.3390/w9010048
  • Wang, S., Zhang, Z., Sun, G., Strauss, P., Guo, J., Tang, Y., Yao, A., Optimization, E. S., Conservation, W., Combating, D., Conservation, W., Forest, E., & Threat, E. (2012). Multi-site calibration, validation, and sensitivity analysis of the MIKE SHE Model for a large watershed in northern China. Hydrology and Earth System Sciences, 16(12), 4621–4632. https://doi.org/10.5194/hess-16-4621-2012
  • Wang, X., & Jeong, J. (2019). APEX-CUTE 4 user manual. Texas A/M Agricultural Research.
  • White, M. J., Gambone, M., Haney, E., Arnold, J., & Gao, J. (2017). Development of a station based climate database for SWAT and APEX assessments in the US. Water, 9(6), 437. https://doi.org/10.3390/w9060437
  • Worqlul, A., Dile, Y. T., Ayana, E., Jeong, J., Adem, A., & Gerik, T. (2018). Impact of climate change on streamflow hydrology in headwater catchments of the Upper Blue Nile. Water, 10(2), 120. https://doi.org/10.3390/w10020120
  • Worqlul, A. W., Dile, Y. T., Schmitter, P., Jeong, J., Meki, M. N., Gerik, T. J., Srinivasan, R., Lefore, N., & Clarke, N. (2019). Water resource assessment, gaps, and constraints of vegetable production in Robit and Dangishta watersheds, Upper Blue Nile Basin, Ethiopia. Agricultural Water Management, 226(September), 105767. https://doi.org/10.1016/j.agwat.2019.105767
  • Wu, Y., Xu, Y., Yin, G., Zhang, X., Li, C., Wu, L., Hao, F., Wang, X., & Hu, Q. (2021). A collaborated framework to improve hydrologic ecosystem services management with sparse data in a semi-arid basin. Hydrology Research, 52(5), 1159–1172. https://doi.org/10.2166/nh.2021.146
  • Xie, H., Shen, Z., Chen, L., Lai, X., Qiu, J., Wei, G., Dong, J., Peng, Y., & Chen, X. (2019). Parameter estimation and uncertainty analysis: A comparison between continuous and event-based modeling of streamflow based on the hydrological. Water, 11(1), 171. https://doi.org/10.3390/w11010171
  • Xu, S., Chen, Y., Xing, L., & Li, C. (2021). Baipenzhu reservoir inflow flood forecasting based on a distributed hydrological model. Water, 13(3), 272. https://doi.org/10.3390/w13030272
  • Yaduvanshi, A., Sharma, R. K., Kar, S. C., & Sinha, A. K. (2018). Rainfall – runoff simulations of extreme monsoon rainfall events in a tropical river basin of India. Natural Hazards, 90(2), 843–861. https://doi.org/10.1007/s11069-017-3075-0
  • Yaseen, Z. M., El-Shafie, A., Jaafar, O., Afan, H. A., & Sayl, K. N. (2015). Artificial intelligence based models for stream-flow forecasting: 2000-2015. Journal of Hydrology, 530, 829–844. https://doi.org/10.1016/j.jhydrol.2015.10.038
  • Yu, B., & Zhu, Z. (2015). Comparaison des modèles AWBM et SimHyd pour des bassins versants boisés. Hydrological Sciences Journal, 60(7-8), 1200–1212. https://doi.org/10.1080/02626667.2014.961924
  • Zakhrouf, M., Bouchelkia, H., Stamboul, M., & Kim, S. (2020). Novel hybrid approaches based on evolutionary strategy for streamflow forecasting in the Chellif River, Algeria. Acta Geophysica, 68(1), 167–180. https://doi.org/10.1007/s11600-019-00380-5
  • Zeiger, S. J., & Hubbart, J. A. (2016). A SWAT model validation of nested-scale contemporaneous stream flow, suspended sediment and nutrients from a multiple-land-use watershed of the central USA. The Science of the Total Environment, 572, 232–243. https://doi.org/10.1016/j.scitotenv.2016.07.178
  • Zhang, L., Xue, B., Yan, Y., Wang, G., Sun, W., Li, Z., Yu, J., Xie, G., & Shi, H. (2019). Model uncertainty analysis methods for semi-arid watersheds with different characteristics: A comparative. Water, 11(6), 1177. https://doi.org/10.3390/w11061177
  • Zhang, X., Zhang, X., Hu, S., Liu, T., & Li, G. (2013). Runoff and sediment modeling in a peri-urban artificial landscape: Case study of Olympic Forest Park in Beijing. Journal of Hydrology, 485, 126–138. https://doi.org/10.1016/j.jhydrol.2012.01.038
  • Zhao, H., Li, H., Xuan, Y., Li, C., & Ni, H. (2022). Improvement of the SWAT model for snowmelt runoff simulation in seasonal snowmelt area using remote sensing data. Remote Sensing, 14(22), 5823. https://doi.org/10.3390/rs14225823