89
Views
0
CrossRef citations to date
0
Altmetric
Material Engineering

Numerical analysis of alpha-beta brass by constitutive model for prediction of hot flow stress

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, & show all
Article: 2362785 | Received 15 Feb 2024, Accepted 21 May 2024, Published online: 01 Jul 2024

References

  • Alves, M. (2000). Material constitutive law for large strains and strainrates. Journal of Engineering Mechanics, 126(2), 215–218. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:2(215)
  • Challa, B., & Rao, S. S. (2021). Study of mechanical properties and microstructural behaviour of alpha-beta brass at elevated temperature. E3S Web of Conferences, 309, 01146. https://doi.org/10.1051/e3sconf/202130901146
  • Challa, B., & RaoSeeram, S. (2023). Hot deformation behavior and strain rate sensitivity of α+ β brass sheet by uniaxial material constitutive equations. Indian Journal of Engineering and Materials Sciences (IJEMS), 29(6), 826–831.
  • Challa, B., & Srinivasa Rao, S. (2022). High temperatures deformation and formability evaluation of α+ β brass sheet by experimental and theoretical approaches. Advances in Materials and Processing Technologies, 8(sup4), 2173–2190. https://doi.org/10.1080/2374068X.2022.2036044
  • Challa, B., Srinivasa Rao, S., Manne, P., Buddi, T., & Satyanarayana, K. (2022). Experimental investigation and optimisation of α–β brass at elevated temperatures using Taguchi approach. Advances in Materials and Processing Technologies, 8(sup2), 537–548. https://doi.org/10.1080/2374068X.2021.1945310
  • Chen, G., Chen, L., Zhao, G., Zhang, C., & Cui, W. (2017). Microstructure analysis of an Al-Zn-Mg alloy during porthole die extrusion based on modeling of constitutive equation and dynamic recrystallization. Journal of Alloys and Compounds, 710, 80–91. https://doi.org/10.1016/j.jallcom.2017.03.240
  • He, X., Yu, Z., & Lai, X. (2008). A method to predict flow stress considering dynamic recrystallization during hot deformation. Computational Materials Science, 44(2), 760–764. https://doi.org/10.1016/j.commatsci.2008.05.021
  • Hussaini, S. M., Singh, S. K., & Gupta, A. K. (2014). Formability of austenitic stainless steel 316 sheet in dynamic strain aging regime. Acta Metallurgica Slovaca, 20(1), 71–81. https://doi.org/10.12776/ams.v20i1.187
  • Johnson, G. R., & Cook, W. H. (1985). Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(1), 31–48. https://doi.org/10.1016/0013-7944(85)90052-9
  • Khan, A. S., Suh, Y. S., & Kazmi, R. (2004). Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys. International Journal of Plasticity, 20(12), 2233–2248. https://doi.org/10.1016/j.ijplas.2003.06.005
  • Kotkunde, N., Krishnamurthy, H. N., Singh, S. K., & Jella, G. (2018). Experimental and numerical investigations on hot deformation behavior and processing maps for ASS 304 and ASS 316. High Temperature Materials and Processes, 37(9-10), 873–888. https://doi.org/10.1515/htmp-2017-0047
  • Lin, Y. C., & Chen, X. M. (2011). A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Materials & Design, 32(4), 1733–1759. https://doi.org/10.1016/j.matdes.2010.11.048
  • Lin, Y. C., & Liu, G. (2010). A new mathematical model for predicting flow stress of typical high-strength alloy steel at elevated high temperature. Computational Materials Science, 48(1), 54–58. https://doi.org/10.1016/j.commatsci.2009.06.026
  • Lin, Y. C., Wen, D. X., Deng, J., Liu, G., & Chen, J. (2014). Constitutive models for high-temperature flow behaviors of a Ni-based superalloy. Materials & Design, 59, 115–123. https://doi.org/10.1016/j.matdes.2014.02.041
  • Lin, Y. C., Yang, H., Xin, Y., & Li, C. Z. (2018). Effects of initial microstructures on serrated flow features and fracture mechanisms of a nickel-based superalloy. Materials Characterization, 144, 9–21. https://doi.org/10.1016/j.matchar.2018.06.029
  • Phaniraj, M. P., & Lahiri, A. K. (2003). The applicability of neural network model to predict flow stress for carbon steels. Journal of Materials Processing Technology, 141(2), 219–227. https://doi.org/10.1016/S0924-0136(02)01123-8
  • Prasad, Y. V. R. K., Rao, K. P., & Sasidhar, S. (Eds.) (2015). Hot working guide: a compendium of processing maps. ASM international.
  • Rodriguez, P. (1984). Serrated plastic flow. Bulletin of Materials Science, 6(4), 653–663. https://doi.org/10.1007/BF02743993
  • Rule, W. K., & Jones, S. E. (1998). A revised form for the Johnson–Cook strength model. International Journal of Impact Engineering, 21(8), 609–624. https://doi.org/10.1016/S0734-743X(97)00081-X
  • Sajun Prasad, K., Panda, S. K., Kar, S. K., Sen, M., Murty, S. N., & Sharma, S. C. (2017). Microstructures, forming limit and failure analyses of inconel 718 sheets for fabrication of aerospace components. Journal of Materials Engineering and Performance, 26(4), 1513–1530. https://doi.org/10.1007/s11665-017-2547-4
  • Srinivasulu, S., & Jain, A. (2006). A comparative analysis of training methods for artificial neural network rainfall–runoff models. Applied Soft Computing, 6(3), 295–306. https://doi.org/10.1016/j.asoc.2005.02.002
  • Verleysen, P., Peirs, J., Van Slycken, J., Faes, K., & Duchene, L. (2011). Effect of strain rate on the forming behaviour of sheet metals. Journal of Materials Processing Technology, 211(8), 1457–1464. https://doi.org/10.1016/j.jmatprotec.2011.03.018
  • Zhang, P., Hu, C., Ding, C. G., Zhu, Q., & Qin, H. Y. (2015). Plastic deformation behavior and processing maps of a Ni-based superalloy. Materials & Design (1980-2015), 65, 575–584. https://doi.org/10.1016/j.matdes.2014.09.062
  • Zhao, B., Zhao, T., Li, G., & Lu, Q. (2014). The kinetics of dynamic recrystallization of a low carbon vanadium-nitride microalloyed steel. Materials Science and Engineering: A, 604, 117–121. https://doi.org/10.1016/j.msea.2014.03.019