86
Views
0
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Thermal characterization of porous longitudinal rectangular moving fin wetted with GO-MoS2-Al2O3/C2H6O2-H2O ternary hybrid nanofluid

ORCID Icon & ORCID Icon
Article: 2364052 | Received 06 Mar 2024, Accepted 27 May 2024, Published online: 01 Jul 2024

References

  • Hosseinzadeh, K., Mogharrebi, A. R., Asadi, A., Paikar, M., & Ganji, D. D. (2020). Effect of fin and hybrid nano-particles on solid process in hexagonal triplex latent heat thermal energy storage system. Journal of Molecular Liquids, 300, 112347. https://doi.org/10.1016/j.molliq.2019.112347
  • Kundu, B., & Das, P. K. (1999). Performance analysis of eccentric annular fins with a variable base temperature. Numerical Heat Transfer: Part A: Applications, 36(7), 751–766. https://doi.org/10.1080/104077899274552
  • Ahmad, A., Sulaiman, M., Alhindi, A., & Aljohani, A. J. (2020). Analysis of temperature profiles in longitudinal fin designs by a novel neuroevolutionary approach. IEEE Access, 8, 113285–113308. https://doi.org/10.1109/ACCESS.2020.3003253
  • Ahmad, F., Abdal, S., Ayed, H., Hussain, S., Salim, S., & Othman Almatroud, A. (2021). The improved thermal efficiency of Maxwell hybrid nanofluid comprising of graphene oxide plus silver/kerosene oil over stretching sheet. Case Studies in Thermal Engineering, 27, 101257. https://doi.org/10.1016/j.csite.2021.101257
  • Ahmad, S., Naveed Khan, M., & Nadeem, S. (2022). Unsteady three dimensional bioconvective flow of Maxwell nanofluid over an exponentially stretching sheet with variable thermal conductivity and chemical reaction. International Journal of Ambient Energy, 43(1), 6542–6552. https://doi.org/10.1080/01430750.2022.2029765
  • Al-Hossainy, A. F., & Eid, M. R. (2021). Combined experimental thin films, TDDFT-DFT theoretical method, and spin effect on [PEG-H2O/ZrO2+ MgO] hybrid nanofluid flow with higher chemical rate. Surfaces and Interfaces, 23, 100971. https://doi.org/10.1016/j.surfin.2021.100971
  • Ammembal Gopalkrishna Pai, Rekha G. Pai, Lavanya B, Vinay Madhusudanan, Sanjana T.D., Performance analysis of wet porous moving fin under the influence of spherical shaped TiO2-Ag hybrid nanoparticles in a water based fluid. CFD Letters, 7, 16(2024): 105–117. https://doi.org/10.37934/cfdl.16.7.105117
  • Din, Z. U., Ali, A., Khan, Z. A., & Zaman, G. (2023). Investigation of moving trapezoidal and exponential fins with multiple nonlinearities. Ain Shams Engineering Journal, 14(5), 101959. https://doi.org/10.1016/j.asej.2022.101959
  • Fallah Najafabadi, M., Talebi Rostami, H., Hosseinzadeh, K., & Domiri Ganji, D. (2021). Thermal analysis of a moving fin using the radial basis function approximation. Heat Transfer, 50(8), 7553–7567. https://doi.org/10.1002/htj.22242
  • Gamaoun, F., Said, N. M., Makki, R., Varun Kumar, R. S., Sowmya, G., Prasannakumara, B. C., & Kumar, R. (2022). Energy transfer of a fin wetted with ZnO-SAE 50 nanolubricant: An application of α-parameterized differential transform method. Case Studies in Thermal Engineering, 40, 102501. https://doi.org/10.1016/j.csite.2022.102501
  • Ghadikolaei, S. S., Yassari, M., Sadeghi, H., Hosseinzadeh, K., & Ganji, D. D. (2017). Investigation on thermophysical properties of Tio2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technology, 322, 428–438. https://doi.org/10.1016/j.powtec.2017.09.006
  • Gholinia, M., Hosseinzadeh, K., & Ganji, D. D. (2020). Investigation of different base fluids suspend by CNTs hybrid nanoparticle over a vertical circular cylinder with sinusoidal radius. Case Studies in Thermal Engineering, 21, 100666. https://doi.org/10.1016/j.csite.2020.100666
  • Gireesha, B. J., Sowmya, G., Ijaz Khan, M., & Öztop, H. F. (2020). Flow of hybrid nanofluid across a permeable longitudinal moving fin along with thermal radiation and natural convection. Computer Methods and Programs in Biomedicine, 185, 105166. https://doi.org/10.1016/j.cmpb.2019.105166
  • Girish, R., Salma, A., Ananth Subray, P. V., Hanumagowda, B. N., Varma, S. V. K., Nagaraja, K. V., Singh Chohan, J., Khan, U., Hassan, A. M., & Gamaoun, F. (2023). Effect of temperature-dependent internal heat generation over exponential and dovetail convective-radiative porous fin wetted in hybrid nanofluid. Case Studies in Thermal Engineering, 49, 103214. https://doi.org/10.1016/j.csite.2023.103214
  • Goud, J. S., Srilatha, P., Varun Kumar, R. S., Kumar, K. T., Khan, U., Raizah, Z., Gill, H. S., & Galal, A. M. (2022). Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat. Case Studies in Thermal Engineering, 35, 102113. https://doi.org/10.1016/j.csite.2022.102113
  • Hosseinzadeh, K., Asadi, A., Mogharrebi, A. R., Ermia Azari, M., & Ganji, D. D. (2021). Investigation of mixture fluid suspended by hybrid nanoparticles over vertical cylinder by considering shape factor effect. Journal of Thermal Analysis and Calorimetry, 143(2), 1081–1095. https://doi.org/10.1007/s10973-020-09347-x
  • Hosseinzadeh, K., Salehi, S., Mardani, M. R., Mahmoudi, F. Y., Waqas, M., & Ganji, D. D. (2020). Investigation of nano-bioconvective fluid motile microorganism and nanoparticle flow by considering MHD and thermal radiation. Informatics in Medicine Unlocked, 21, 100462. https://doi.org/10.1016/j.imu.2020.100462
  • Hussain, F., Hussain, A., & Nadeem, S. (2022). Unsteady shear-thinning behaviour of nanofluid flow over exponential stretching/shrinking cylinder. Journal of Molecular Liquids, 345, 117894. https://doi.org/10.1016/j.molliq.2021.117894
  • Jing, D., Hu, S., Hatami, M., Xiao, Y., & Jia, J. (2020). Thermal analysis on a nanofluid-filled rectangular cavity with heated fins of different geometries under magnetic field effects. Journal of Thermal Analysis and Calorimetry, 139(6), 3577–3588. https://doi.org/10.1007/s10973-019-08758-9
  • Keerthi, M. L., Gireesha, B. J., & Sowmya, G. (2022). Numerical investigation of efficiency of fully wet porous convective-radiative moving radial fin in the presence of shape-dependent hybrid nanofluid. International Communications in Heat and Mass Transfer, 138, 106341. https://doi.org/10.1016/j.icheatmasstransfer.2022.106341
  • Kezzar, M., Tabet, I., & Eid, M. R. (2020). A new analytical solution of longitudinal fin with variable heat generation and thermal conductivity using DRA. The European Physical Journal Plus, 135(1), 1–15. https://doi.org/10.1140/epjp/s13360-020-00206-0
  • Nayan, A., N. I. F. A. Fauzan, M. R. Ilias, S. F. Zakaria, and N. H. Z. Aznam. (2022). Aligned magnetohydrodynamics (MHD) flow of hybrid nanofluid over a vertical plate through porous medium. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 92 1), 51–64. https://doi.org/10.37934/arfmts.92.1.5164
  • Pavithra, C. G., & Gireesha, B. J. (2024). Heat transfer in a wet porous moving inclined longitudinal fin exposed to convection and radiation in the presence of shape-dependent hybrid nanofluid: Adomian decomposition Sumudu transformation approach. Journal of Molecular Liquids, 393, 123582. https://doi.org/10.1016/j.molliq.2023.123582
  • Puneeth, V., Anandika, R., Manjunatha, S., Khan, M. I., Imran Khan, M., Althobaiti, A., & Galal, A. M. (2022). Implementation of modified Buongiorno’s model for the investigation of chemically reacting rGO-Fe3O4-TiO2-H2O ternary nanofluid jet flow in the presence of bio-active mixers. Chemical Physics Letters, 786, 139194. https://doi.org/10.1016/j.cplett.2021.139194
  • Talbi, N., Kezzar, M., Malaver, M., Tabet, I., Sari, M. R., Metatla, A., & Eid, M. R. (2022). Increment of heat transfer by graphene-oxide and molybdenum-disulfide nanoparticles in ethylene glycol solution as working nanofluid in penetrable moveable longitudinal fin. Waves in Random and Complex Media, 1–23. https://doi.org/10.1080/17455030.2022.2026527
  • Turkyilmazoglu, M. (2021). Thermal management of parabolic pin fin subjected to a uniform oncoming airflow: optimum fin dimensions. Journal of Thermal Analysis and Calorimetry, 143(5), 3731–3739. https://doi.org/10.1007/s10973-020-10382-x
  • Venkateswarlu, B., & Satya Narayana, P. V. (2021). Cu‐Al2O3/H2O hybrid nanofluid flow past a porous stretching sheet due to temperatue‐dependent viscosity and viscous dissipation. Heat Transfer, 50(1), 432–449. https://doi.org/10.1002/htj.21884
  • Wang, F., Varun Kumar, R. S., Sowmya, G., El-Zahar, E. R., Prasannakumara, B. C., Khan, M. I., Khan, S. U., Malik, M. Y., & Xia, W.-F. (2022). LSM and DTM-Pade approximation for the combined impacts of convective and radiative heat transfer on an inclined porous longitudinal fin. Case Studies in Thermal Engineering, 35, 101846. https://doi.org/10.1016/j.csite.2022.101846
  • Weera, W., Varun Kumar, R. S., Sowmya, G., Khan, U., Prasannakumara, B. C., Mahmoud, E. E., & Yahia, I. S. (2023). Convective-radiative thermal investigation of a porous dovetail fin using spectral collocation method. Ain Shams Engineering Journal, 14(1), 101811. https://doi.org/10.1016/j.asej.2022.101811