73
Views
0
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Use of biofuel with turpentine oil additive in a compression ignition engine: a green initiative to fulfill sustainable development goals

, & ORCID Icon
Article: 2364840 | Received 08 Mar 2024, Accepted 16 May 2024, Published online: 04 Jul 2024

References

  • Abed, K. A., El Morsi, A. K., Sayed, M. M., El Shaib, A. A., & Gad, M. S. (2018). Effect of waste cooking-oil biodiesel on performance and exhaust emissions of a diesel engine. Egyptian Journal of Petroleum, 27(4), 985–989. https://doi.org/10.1016/j.ejpe.2018.02.008
  • Ballesteros, R., García, D., Bustamante, F., Alarcón, E., & Lapuerta, M. (2020). Oxyfunctionalized turpentine: Evaluation of properties as automotive fuel. Renewable Energy, 162, 2210–2219. https://doi.org/10.1016/j.renene.2020.10.026
  • Dinesha, P., Kumar, S., & Rosen, M. A. (2021). Effects of particle size of cerium oxide nanoparticles on the combustion behavior and exhaust emissions of a diesel engine powered by biodiesel/diesel blend. Biofuel Research Journal, 8(2), 1374–1383. https://doi.org/10.18331/BRJ2021.8.2.3
  • Dubey, P., & Gupta, R. (2018). Influences of dual bio-fuel (Jatropha biodiesel and turpentine oil) on single cylinder variable compression ratio diesel engine. Renewable Energy, 115, 1294–1302. https://doi.org/10.1016/j.renene.2017.09.055
  • Dueso, C., Muñoz, M., Moreno, F., Arroyo, J., Gil-Lalaguna, N., Bautista, A., Gonzalo, A., & Sánchez, J. L. (2018). Performance and emissions of a diesel engine using sunflower biodiesel with a renewable antioxidant additive from bio-oil. Fuel, 234, 276–285. https://doi.org/10.1016/j.fuel.2018.07.013
  • Fayad, M. A., Sobhi, M., Chaichan, M. T., Badawy, T., Abdul-Lateef, W. E., Dhahad, H. A., Yusaf, T., Isahak, W. N. R. W., Takriff, M. S., & Al-Amiery, A. A. (2023). Reducing soot nanoparticles and NOx emissions in CRDI diesel engine by incorporating TiO2 nano-additives into biodiesel blends and using high rate of EGR. Energies, 16(9), 3921. https://doi.org/10.3390/en16093921
  • Gad, M. S., Ağbulut, U., Afzal, A., Panchal, H., Jayaraj, S., Qasem, N. A. A., El-Shafay, A. S., Jayaraj, A., Qasem, N. A. A., & El-Shafay, A. S. (2023). A comprehensive review on the usage of the nano-sized particles along with diesel/biofuel blends and their impacts on engine behaviors. Fuel, 339, 127364. https://doi.org/10.1016/j.fuel.2022.127364
  • García, M., Botella, L., Gil-Lalaguna, N., Arauzo, J., Gonzalo, A., & Sánchez, J. L. (2017). Antioxidants for biodiesel: Additives prepared from extracted fractions of bio-oil. Fuel Processing Technology, 156, 407–414. https://doi.org/10.1016/j.fuproc.2016.10.001
  • Jeevanantham, A. K., Reddy, D. M., Goyal, N., Bansal, D., Kumar, G., Kumar, A., Nanthagopal, K., & Ashok, B. (2020). Experimental study on the effect of cetane improver with turpentine oil on CI engine characteristics. Fuel, 262, 116551. https://doi.org/10.1016/j.fuel.2019.116551
  • Kadarohman, A., Khoerunnisa, F., Sapee, S., Eko Sardjono, R., Izzudin, I., Mamat, R., Yusop, A. F., Yusaf, T., & Hendrawan, E. (2021). The effect of oxygenated turpentine oil additive in diesel fuel on the performance and emission characteristics in one-cylinder DI engines. Designs, 5( 4), 73. https://doi.org/10.3390/designs5040073
  • Kalaimurugan, K., Karthikeyan, S., Periyasamy, M., Mahendran, G., & Dharmaprabhakaran, T. (2023). Experimental studies on the influence of copper oxide nanoparticle on biodiesel-diesel fuel blend in CI engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(3), 8997–9012. https://doi.org/10.1080/15567036.2019.1679290
  • Kalyani, T., Prasad, L. S. V., & Kolakoti, A. (2023). Effect of triacetin as an oxygenated additive in algae biodiesel fuelled CI engine combustion, performance, and exhaust emission analysis. Fuel, 338, 127366. https://doi.org/10.1016/j.fuel.2022.127366
  • Kukana, R., & Jakhar, O. P. (2022). Effect of ternary blends diesel/n-propanol/composite biodiesel on diesel engine operating parameters. Energy, 260, 124970. https://doi.org/10.1016/j.energy.2022.124970
  • Kumar, D. S., & Murugesan, S. (2023). Experimental investigation on impact of diethyl ether additives with cashew nut shell liquid biodiesel blends on performance characteristics of engine operating at optimum conditions. Emission Control Science and Technology, 9(1), 66–75. https://doi.org/10.1007/s40825-022-00219-4
  • Kumar, S., Dinesha, P., & Rosen, M. A. (2018). Cashew nut shell liquid as a fuel for compression ignition engines: A comprehensive review. Energy & Fuels, 32(7), 7237–7244. https://doi.org/10.1021/acs.energyfuels.8b00579
  • Mirhashemi, F. S., & Sadrnia, H. (2020). NOx emissions of compression ignition engines fueled with various biodiesel blends: A review. Journal of the Energy Institute, 93(1), 129–151. https://doi.org/10.1016/j.joei.2019.04.003
  • Mohammed, A. S., Atnaw, S. M., Ramaya, A. V., & Alemayehu, G. (2023). A comprehensive review on the effect of ethers, antioxidants, and cetane improver additives on biodiesel-diesel blend in CI engine performance and emission characteristics. Journal of the Energy Institute, 108, 101227. https://doi.org/10.1016/j.joei.2023.101227
  • Mohan, S., & Dinesha, P. (2022). Emulsification of waste cooking oil biodiesel blend with hydrogen peroxide to assess tailpipe emissions and performance of a compression ignition engine. Heat Transfer, 51(4), 3721–3735. https://doi.org/10.1002/htj.22518
  • Nagappan, M., Devaraj, A., Babu, J. M., Saxena, N. V., Prakash, O., Kumar, P., & Sharma, A. (2022). Impact of additives on combustion, performance and exhaust emission of biodiesel fueled direct injection diesel engine. Materials Today: Proceedings, 62, 2326–2331. https://doi.org/10.1016/j.matpr.2022.04.114
  • Naik, D. B., Meivelu, U., Thangarasu, V., Annamalai, S., & Sivasankaralingam, V. (2022). Experimental and empirical analysis of a diesel engine fuelled with ternary blends of diesel, waste cooking sunflower oil biodiesel and diethyl ether. Fuel, 320, 123961. https://doi.org/10.1016/j.fuel.2022.123961
  • Nikkhah, A., Bagheri, I., Psomopoulos, C., Payman, S. H., Zareiforoush, H., El Haj Assad, M., Bakhshipour, A., & Ghnimi, S. (2023). Sustainable second-generation biofuel production potential in a developing country case study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(3), 7785–7798. https://doi.org/10.1080/15567036.2019.1677805
  • Rangabashiam, D., Jayaprakash, V., Ganesan, S., & Christopher, D. (2023). Investigation on the performance, emission and combustion pattern of research diesel engine fueled with higher alcohol and pongamia biodiesel blends. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(2), 4777–4788. https://doi.org/10.1080/15567036.2019.1670760
  • Saravanan, C. G., Kiran, K. R., Vikneswaran, M., Rajakrishnamoorthy, P., & Yadav, S. P. R. (2020). Impact of fuel injection pressure on the engine characteristics of CRDI engine powered by pine oil biodiesel blend. Fuel, 264, 116760. https://doi.org/10.1016/j.fuel.2019.116760
  • Sayyed, S., Das, R. K., Kulkarni, K., Alam, T., & Eldin, S. M. (2023). Influence of additive mixed ethanol-biodiesel blends on diesel engine characteristics. Alexandria Engineering Journal, 71, 619–629. https://doi.org/10.1016/j.aej.2023.03.091
  • Selvan, B. K., Das, S., Chandrasekar, M., Girija, R., Vennison, S. J., Jaya, N., Saravanan, P., Rajasimman, M., Vasseghian, Y., & Rajamohan, N. (2022). Utilization of biodiesel blended fuel in a diesel engine–Combustion engine performance and emission characteristics study. Fuel, 311, 122621. https://doi.org/10.1016/j.fuel.2021.122621
  • Singh, R., Singh, S., & Kumar, M. (2020). Impact of n-butanol as an additive with eucalyptus biodiesel-diesel blends on the performance and emission parameters of the diesel engine. Fuel, 277, 118178. https://doi.org/10.1016/j.fuel.2020.118178
  • United Nations. (2020). The sustainable development goals report 2020. https://unstats.un.org/sdgs/report/2020/. (Accessed on 15 May 2023).
  • Venkatesan, V., & Nallusamy, N. (2020). Pine oil-soapnut oil methyl ester blends: A hybrid biofuel approach to completely eliminate the use of diesel in a twin cylinder off-road tractor diesel engine. Fuel, 262, 116500. https://doi.org/10.1016/j.fuel.2019.116500
  • Vergel-Ortega, M., Valencia-Ochoa, G., & Duarte-Forero, J. (2021). Experimental study of emissions in single-cylinder diesel engine operating with diesel-biodiesel blends of palm oil-sunflower oil and ethanol. Case Studies in Thermal Engineering, 26, 101190. https://doi.org/10.1016/j.csite.2021.101190
  • Wong, P. K., Chen, S. H., Ghadikolaei, M. A., Ng, K. W., Lee, S. M. Y., Xu, J. C., Lian, Z. D., Ren, M., Ning, Z., & Gali, N. K. (2023). Physical properties and structural characteristics of particulate matter emitted from a diesel engine fueled with biodiesel blends. Environmental Pollution (Barking, Essex: 1987), 333, 122099. https://doi.org/10.1016/j.envpol.2023.122099
  • Zhang, X., Li, N., Han, S., Wei, Z., & Dai, B. (2022). Terpene resin prepared from renewable turpentine oil as a new type of cold flow improver for soybean biodiesel-diesel blends. Fuel, 320, 123844. https://doi.org/10.1016/j.fuel.2022.123844