195
Views
0
CrossRef citations to date
0
Altmetric
Civil and Environmental Engineering

Life cycle assessment of steel fibre-reinforced concrete beams

ORCID Icon, , &
Article: 2374942 | Received 02 Apr 2024, Accepted 25 Jun 2024, Published online: 11 Jul 2024

References

  • Abdallah, S., Fan, M., & Rees, D. W. A. (2016). Analysis and modelling of mechanical anchorage of 4D/5D hooked end steel fibres. Materials & Design, 112, 539–552. https://doi.org/10.1016/j.matdes.2016.09.107
  • Abdallah, S., Rees, D. W. A., Ghaffar, S. H., & Fan, M. (2018). Understanding the effects of hooked-end steel fibre geometry on the uniaxial tensile behaviour of self-compacting concrete. Construction and Building Materials, 178, 484–494. https://doi.org/10.1016/j.conbuildmat.2018.05.191
  • Al-Ameeri, A. S., Rafiq, M. I., & Tsioulou, O. (2021). Combined impact of carbonation and crack width on the chloride penetration and corrosion resistance of concrete structures. Cement and Concrete Composites, 115, 103819. https://doi.org/10.1016/j.cemconcomp.2020.103819
  • Balendran, R. V., Zhou, F. P., Nadeem, A., & Leung, A. Y. T. (2002). Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete. Building and Environment, 37(12), 1361–1367. https://doi.org/10.1016/S0360-1323(01)00109-3
  • Bekaert. (2021). Environmental product declaration type III ITB No. 215/2021. https://www.bekaert.com/en/product-catalog/construction/concrete-reinforcement/downloads
  • Bhosale, A. B., & Prakash, S. S. (2020). Crack propagation analysis of synthetic vs. steel vs. hybrid fibre-reinforced concrete beams using digital image correlation technique. International Journal of Concrete Structures and Materials, 14(1), 57. https://doi.org/10.1186/s40069-020-00427-8
  • Birincioglu, M. I., Keskin, R. S. O., & Arslan, G. (2022). Shear strength of steel fiber reinforced concrete deep beams without stirrups. Advances in Concrete Construction, 13(1), 1–10. https://doi.org/10.12989/acc.2022.13.1.001
  • Carević, V., & Ignjatović, I. (2019). Influence of loading cracks on the carbonation resistance of RC elements. Construction and Building Materials, 227, 116583. https://doi.org/10.1016/j.conbuildmat.2019.07.309
  • Chen, E., Berrocal, C. G., Löfgren, I., & Lundgren, K. (2023). Comparison of the service life, life-cycle costs and assessment of hybrid and traditional reinforced concrete through a case study of bridge edge beams in Sweden. Structure and Infrastructure Engineering, 19(1), 39–57. https://doi.org/10.1080/15732479.2021.1919720
  • Chen, G., Gao, D., Zhu, H., Song Yuan, J., Xiao, X., & Wang, W. (2021). Effects of novel multiple hooked-end steel fibres on flexural tensile behaviour of notched concrete beams with various strength grades. Structures, 33, 3644–3654. https://doi.org/10.1016/j.istruc.2021.06.016
  • Colangelo, F., Forcina, A., Farina, I., & Petrillo, A. (2018). Life cycle assessment (LCA) of different kinds of concrete containing waste for sustainable construction. Buildings, 8(5), 70. https://doi.org/10.3390/buildings8050070
  • Dang, T. D., Tran, D. T., Nguyen-Minh, L., & Nassif, A. Y. (2021). Shear resistant capacity of steel fibres reinforced concrete deep beams: An experimental investigation and a new prediction model. Structures, 33, 2284–2300. https://doi.org/10.1016/j.istruc.2021.05.091
  • Department for Business, Energy & Industrial Strategy. (2022). Greenhouse gas reporting: Conversion factors 2022. https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2022
  • Deutscher Ausschuss fur Stahlbeton. (2012). DAfStb guideline’ steel fibre reinforced concrete’. https://ec.europa.eu/growth/tools-databases/tris/sl/index.cfm/search/?trisaction=search.detail&year=2012&num=681&dLang=EN
  • Dlouhý, L., & Pouillon, S. (2019). Application of the design code for steel fibre reinforced concrete into finite element software. IOP Conference Series: Materials Science and Engineering, 596(1), 012009. https://doi.org/10.1088/1757-899X/596/1/012009
  • Dong, S., Wang, D., Wang, X., D'Alessandro, A., Ding, S., Han, B., & Ou, J. (2022). Optimising flexural cracking process of ultra-high performance concrete via incorporating microscale steel wires. Cement and Concrete Composites, 134, 104830. https://doi.org/10.1016/j.cemconcomp.2022.104830
  • Dossche, C., Boel, V., & De Corte, W. (2018). Comparative material-based life cycle analysis of structural beam-floor systems. Journal of Cleaner Production, 194, 327–341. https://doi.org/10.1016/j.jclepro.2018.05.062
  • EN 1992. (2002). Loading for buildings. Part 1. BSI.
  • EN 1992. (2004). Eurocode 2: Design of concrete structures. BSI.
  • EN 15804. (2019). BS EN 15804:2012 + A2:2019. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BSI. https://www.en-standard.eu/bs-en-15804-2012-a2-2019-sustainability-of-construction-works-environmental-product-declarations-core-rules-for-the-product-category-of-construction-products/
  • EN 15978. (2012). BS EN 15978:2011 Sustainability of construction works. Assessment of environmental performance of buildings. Calculation method. BSI. https://www.en-standard.eu/bs-en-15978-2011-sustainability-of-construction-works-assessment-of-environmental-performance-of-buildings-calculation-method/
  • Gao, D., Ding, C., Pang, Y., & Chen, G. (2021). An inverse analysis method for multi-linear tensile stress-crack opening relationship of 3D/4D/5D steel fiber reinforced concrete. Construction and Building Materials, 309, 125074. https://doi.org/10.1016/j.conbuildmat.2021.125074
  • Gao, D., Guo, Y., Pang, Y., Chen, G., Shi, M., Ding, C., & Liu, D. (2023). Analysis and prediction of the compressive and splitting tensile performances for the novel multiple hooked-end steel fiber reinforced concrete. Structural Concrete, 24(1), 1452–1470. https://doi.org/10.1002/suco.202200487
  • García-Taengua, E., Martí-Vargas, J. R., & Serna, P. (2014). Splitting of concrete cover in steel fiber reinforced concrete: Semi-empirical modelling and minimum confinement requirements. Construction and Building Materials, 66, 743–751. https://doi.org/10.1016/j.conbuildmat.2014.06.020
  • GHG Protocol. (2011). The greenhouse gas protocol. https://ghgprotocol.org/product-standard
  • Gibbons, O., & Orr, J. (2020). How to calculate embodied carbon. The Institution of Structural Engineers. https://www.istructe.org/IStructE/media/Public/Resources/istructe-how-to-calculate-embodied-carbon.pdf
  • Gibbs, M. J., Soyka, P., & Conneely, D. (2000). IPCC good practice guidance and uncertainty management in national greenhouse gas inventories. IPCC. https://www.ipcc.ch/publication/good-practice-guidance-and-uncertainty-management-in-national-greenhouse-gas-inventories/
  • Granju, J.-L., & Ullah Balouch, S. (2005). Corrosion of steel fibre reinforced concrete from the cracks. Cement and Concrete Research, 35(3), 572–577. https://doi.org/10.1016/j.cemconres.2004.06.032
  • Guler, S., & Akbulut, Z. F. (2022). Residual strength and toughness properties of 3D, 4D and 5D steel fibre-reinforced concrete exposed to high temperatures. Construction and Building Materials, 327, 126945. https://doi.org/10.1016/j.conbuildmat.2022.126945
  • Guler, S., Yavuz, D., Korkut, F., & Ashour, A. (2019). Strength prediction models for steel, synthetic, and hybrid fiber reinforced concretes. Structural Concrete, 20(1), 428–445. https://doi.org/10.1002/suco.201800088
  • Guo, Q., Jiang, L., Wang, J., & Liu, J. (2022). Analysis of carbonation behavior of cracked concrete. Materials, 15(13), 4518. https://doi.org/10.3390/ma15134518
  • Hoang, K. H., & Tue, N. V. (2018). Comparative flexural and tensile behaviours of ultra-high performance fibre reinforced concrete with different steel fibres. In V. Mechtcherine, V. Slowik, & P. Kabele (Eds.), Strain-hardening cement-based composites (pp. 492–501). Springer. https://doi.org/10.1007/978-94-024-1194-2_57
  • Hussain, I., Ali, B., Akhtar, T., Jameel, M. S., & Raza, S. S. (2020). Comparison of mechanical properties of concrete and design thickness of pavement with different types of fiber-reinforcements (steel, glass, and polypropylene). Case Studies in Construction Materials, 13, e00429. https://doi.org/10.1016/j.cscm.2020.e00429
  • Hyun-Ho, L., & Hwa-Jin, L. (2004). Characteristic strength and deformation of SFRC considering steel fiber factor and volume fraction. Journal of the Korea Concrete Institute, 16(6), 759–766. https://doi.org/10.4334/JKCI.2004.16.6.759
  • Integrated Materials Solutions. (2020). Environmental product declaration EPD no: 1205. https://www.igbc.ie/wp-content/uploads/2020/06/EPD-IMS-Recycled-Aggregates-18.06.2020-EPDIE-20-22.pdf
  • International Energy Agency. (2019). Direct CO2 emissions from selected heavy industry sectors, 2019 – charts – data & statistics. https://www.iea.org/data-and-statistics/charts/direct-co2-emissions-from-selected-heavy-industry-sectors-2019
  • International Energy Agency. (2020). Iron and steel technology roadmap. https://www.iea.org/reports/iron-and-steel-technology-roadmap
  • International Energy Agency. (2022a). Cement. https://www.iea.org/reports/cement
  • International Energy Agency. (2022b). Global energy review: CO2 emissions in 2021. https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2
  • ISO 14025. (2006a). ISO 14025:2006. Environmental labels and declarations—Type III environmental declarations—Principles and procedures (1st ed.). ISO. https://www.iso.org/standard/38131.html
  • ISO 14040. (2006b). ISO 14040: Environmental management-life cycle assessment-principles and framework. https://www.iso.org/standard/37456.html
  • ISO 14044. (2006c). ISO 14044: 2006 Environmental management-life cycle assessment-requirements and guidelines (1st ed., Vol. 14044). https://www.iso.org/obp/ui/#iso:std:iso:14044:ed-1:v1:en
  • ISO 14067. (2018). ISO 14067: Greenhouse gases—Carbon footprint of products—Requirements and guidelines for quantification (1st ed.). https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/12/71206.html
  • Jhatial, A. A., Sohu, S., Bhatti, N.-K., Lakhiar, M. T., & Oad, R. (2018). Effect of steel fibres on the compressive and flexural strength of concrete. International Journal of Advanced and Applied Sciences, 5(10), 16–21. https://doi.org/10.21833/ijaas.2018.10.003
  • Jiang, B., Li, H. X., Dong, L., Wang, Y., & Tao, Y. (2018). Cradle-to-site carbon emissions assessment of prefabricated rebar cages for high-rise buildings in China. Sustainability, 11(1), 42. https://doi.org/10.3390/su11010042
  • Jones, C. (2019). Embodied carbon-The ICE database. Inventory of Carbon and Energy (ICE).
  • Joshi, S. S., Thammishetti, N., Prakash, S. S., & Jain, S. (2018). Cracking and ductility analysis of steel fiber-reinforced prestressed concrete beams in flexure. ACI Structural Journal, 115(6), 1575–1588. https://doi.org/10.14359/51706827
  • Kim, J. (2022). Influence of quality of recycled aggregates on the mechanical properties of recycled aggregate concretes: An overview. Construction and Building Materials, 328, 127071. https://doi.org/10.1016/j.conbuildmat.2022.127071
  • Lei, B., Yu, L., Chen, Z., Yang, W., Deng, C., & Tang, Z. (2022). Carbon emission evaluation of recycled fine aggregate concrete based on life cycle assessment. Sustainability, 14(21), 14448. https://doi.org/10.3390/su142114448
  • Li, Y., Zhang, Q., Kamiński, P., Deifalla, A. F., Sufian, M., Dyczko, A., Kahla, N. B., & Atig, M. (2022). Compressive strength of steel fiber-reinforced concrete employing supervised machine learning techniques. Materials, 15(12), 4209. https://doi.org/10.3390/ma15124209
  • Lippiatt, N., Ling, T.-C., & Pan, S.-Y. (2020). Towards carbon-neutral construction materials: Carbonation of cement-based materials and the future perspective. Journal of Building Engineering, 28, 101062. https://doi.org/10.1016/j.jobe.2019.101062
  • Liu, D., & Gambatese, J. (2018, March 29). Energy consumption by construction workers for on-site activities [Paper presentation]. Construction Research Congress 2018 (pp. 533–542), New Orleans, LA, United States. https://doi.org/10.1061/9780784481301.053
  • Lopez-Calvo, H. Z., Montes-García, P., Jiménez-Quero, V. G., Gómez-Barranco, H., Bremner, T. W., & Thomas, M. D. A. (2018). Influence of crack width, cover depth and concrete quality on corrosion of steel in HPC containing corrosion inhibiting admixtures and fly ash. Cement and Concrete Composites, 88, 200–210. https://doi.org/10.1016/j.cemconcomp.2018.01.016
  • Mahmood, S. M. F., Agarwal, A., Foster, S. J., & Valipour, H. (2018). Flexural performance of steel fibre reinforced concrete beams designed for moment redistribution. Engineering Structures, 177, 695–706. https://doi.org/10.1016/j.engstruct.2018.10.007
  • Mousavi, S. M., & Ranjbar, M. M. (2021). Experimental study of the effect of silica fume and coarse aggregate type on the fracture characteristics of high-strength concrete. Engineering Fracture Mechanics, 258, 108094. https://doi.org/10.1016/j.engfracmech.2021.108094
  • Nakic, D. (2018). Environmental evaluation of concrete with sewage sludge ash based on LCA. Sustainable Production and Consumption, 16, 193–201. https://doi.org/10.1016/j.spc.2018.08.003
  • Ng, T. S., & Htut, T. N. S. (2017). Structural application of steel fibres reinforced concrete with and without conventional reinforcement. New Zeal. Concr. Ind, 3101(2006).
  • Officine Maccaferri S.p.A. (2010). New line 9 metro construction (case history INT/CH/TL 001 OM).
  • Paluri, Y., Mogili, S., Mudavath, H., & Pancharathi, R. K. (2020). A study on the influence of steel fibres on the performance of Fine Reclaimed Asphalt Pavement (FRAP) in pavement quality concrete. Materials Today: Proceedings, 32, 657–662. https://doi.org/10.1016/j.matpr.2020.03.147
  • Publicly Available Specification. (2011). PAS 2050: Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. BSI. https://knowledge.bsigroup.com/products/specification-for-the-assessment-of-the-life-cycle-greenhouse-gas-emissions-of-goods-and-services/standard
  • Purnell, P. (2013). The carbon footprint of reinforced concrete. Advances in Cement Research, 25(6), 362–368. https://doi.org/10.1680/adcr.13.00013
  • Putri, A. D. (2017). Recycled concrete aggregate (RCA) for the use in construction: General review. Advance Concrete Materials, School of Civil Engineering, Beijing Jiaotong University, 1–14.
  • Royal Institution of Chartered Surveyors. (2017). Whole life carbon assessment for the built environment.
  • Sivapriya, S. V., Ridhuvaran, S., Karthick, V., & Gopikrishna, R. (2018). Flexural and compressional behaviour of steel fiber reinforced concrete. Dusunen Adam, 9, 405–412.
  • Sizirici, B., Fseha, Y., Cho, C.-S., Yildiz, I., & Byon, Y.-J. (2021). A review of carbon footprint reduction in the construction industry, from design to operation. Materials, 14(20), 6094. https://doi.org/10.3390/ma14206094
  • Speciality Steel. (2021). Environmental product declaration (BREG EN EPD No.: 000341). UK CARES. https://www.carescertification.com/files/approvals/1758/sustainability/1738.pdf
  • Strieder, H. L., Dutra, V. F. P., Graeff, Â. G., Núñez, W. P., & Merten, F. R. M. (2022). Performance evaluation of pervious concrete pavements with recycled concrete aggregate. Construction and Building Materials, 315, 125384. https://doi.org/10.1016/j.conbuildmal.2021.125384
  • Sun, B., Xiao, R., Ruan, W., & Wang, P. (2020). Corrosion-induced cracking fragility of RC bridge with improved concrete carbonation and steel reinforcement corrosion models. Engineering Structures, 208, 110313. https://doi.org/10.1016/j.engstruct.2020.110313
  • Teychenné, D. C., Erntroy, H. C., Marsh, B. K., Establishment, B. R., & Franklin, R. E. (1997). Design of normal concrete mixes (2nd ed.). Building Research Establishment. http://prism.librarymanagementcloud.co.uk/port/items/833185
  • Torres, J. A., & Lantsoght, E. O. L. (2019). Influence of fiber content on shear capacity of steel fiber-reinforced concrete beams. Fibers, 7(12), 102. https://doi.org/10.3390/fib7120102
  • Tufail, M., Shahzada, K., Gencturk, B., & Wei, J. (2017). Effect of elevated temperature on mechanical properties of limestone, quartzite and granite concrete. International Journal of Concrete Structures and Materials, 11(1), 17–28. https://doi.org/10.1007/s40069-016-0175-2
  • United Nations Environment Programme. (2022). 2022 Global status report for buildings and construction: Towards a zero‑emission, efficient and resilient buildings and construction sector. http://www.unep.org/resources/publication/2022-global-status-report-buildings-and-construction
  • Van den Heede, P., & De Belie, N. (2012). Environmental impact and life cycle assessment (LCA) of traditional and 'green’ concretes: Literature review and theoretical calculations. Cement and Concrete Composites, 34(4), 431–442. https://doi.org/10.1016/j.cemconcomp.2012.01.004
  • Vandewalle, L., Nemegeer, D., Balázs, G., Barr, B., Barros, J., Bartos, P., Banthia, N., Criswell, M., Denarie, E., Prisco, M., Falkner, H., Gettu, R., Gopalaratnam, V., Groth, P., Hausler, V., Kooiman, A., Kovler, K., Massicotte, B., Mindess, S., & Walraven, J. (2003). Test and design methods for steel fibre reinforced concrete’ - sigma-epsilon-design method - Final recommendation. Materials and Structures, 36, 560–567.
  • Walraven, J. C., & Horst, A. V. D. (2013). FIB model code for concrete structures 2010. Internation Federation for Structural Concrete (fib). https://research.tudelft.nl/en/publications/fib-model-code-for-concrete-structures-2010
  • Wang, B., & Huang, C. (2008). Study on crack resistance of steel fiber reinforced self-stressing concrete in old bridge reinforcement. Key Engineering Materials, 400-402, 543–548. https://doi.org/10.4028/www.scientific.net/KEM.400-402.543
  • Wang, B., Yan, L., Fu, Q., & Kasal, B. (2021). A comprehensive review on recycled aggregate and recycled aggregate concrete. Resources, Conservation and Recycling, 171, 105565. https://doi.org/10.1016/j.resconrec.2021.105565
  • Wang, Q., Sun, W., Guo, L., Gu, C., & Zong, J. (2017). Prediction of chloride ingress in steel fibre reinforced concrete under bending load. Ceramics - Silikaty, 62, 59–66. https://doi.org/10.13168/cs.2017.0045
  • Xu, Z., Wenyin, W. Y., & Liang, Y. (2006). Experimental study of steel fibre bridging action on crack propagation in fibre reinforced concrete. In M. H. Aliabadi, Q. Li, L. Li, & F. G. Buchholz (Eds.), Fracture and damage mechanics V, pts 1 and 2 (Vols. 324–325, pp.1067–1067+). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/KEM.324-325.1067
  • Yadav, D., & Prashanth, M. H. (2022). Numerical study on the behaviour of steel fiber reinforced concrete beams for different crack lengths. Materials Today: Proceedings, 65, 1459–1466. https://doi.org/10.1016/j.matpr.2022.04.410
  • Yang, Y., Wang, Y., Chen, Y., & Zhang, B. (2019). Test study on the impact resistance of steel fiber reinforced full lightweight concrete beams. Earthquakes and Structures, 17(6), 567–575. https://doi.org/10.12989/eas.2019.17.6.567
  • Zabalza Bribián, I., Valero Capilla, A., & Aranda Usón, A. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46(5), 1133–1140. https://doi.org/10.1016/j.buildenv.2010.12.002
  • Zamri, N. F., Mohamed, R. N., & Elliott, K. S. (2021). Shear capacity of precast half-joint beams with steel fibre-reinforced self-compacting concrete. Construction and Building Materials, 272, 121813. https://doi.org/10.1016/j.conbuildmat.2020.121813
  • Zeng, W., Ding, Y., Zhang, Y., & Dehn, F. (2020). Effect of steel fibre on the crack permeability evolution and crack surface topography of concrete subjected to freeze-thaw damage. Cement and Concrete Research, 138, 106230. https://doi.org/10.1016/j.cemconres.2020.106230
  • Zhong, A., Sofi, M., Lumantarna, E., Zhou, Z., & Mendis, P. (2021). Flexural capacity prediction model for steel fibre-reinforced concrete beams. International Journal of Concrete Structures and Materials, 15(1), 28. https://doi.org/10.1186/s40069-021-00461-0