93
Views
0
CrossRef citations to date
0
Altmetric
Civil and Environmental Engineering

Sustainability-driven model for predicting compressive strength in concrete structures

ORCID Icon & ORCID Icon
Article: 2374947 | Received 12 Mar 2024, Accepted 27 Jun 2024, Published online: 04 Jul 2024

References

  • Abrams, L. D. (1919). Properties of concrete (3rd ed.). Pitman Publishing Ltd.
  • ACI 211.1-91. (1991). Standard practice for selecting proportions for normal, heavyweight, and mass concrete. American Concrete Institute.
  • ACI 234R-96. (2000). Guide for the use of silica fume in concrete. Manual of concrete practice (pp. 1–51). American Concrete Institute.
  • American Society for Testing of Materials (ASTM). (2010). Standard specification for air-entraining admixtures for concrete. ASTM C260/C260M.
  • American Society for Testing of Materials (ASTM). (2014a). Standard test method for sieve analysis of fine and coarse aggregates. ASTM C136/C136M.
  • American Society for Testing of Materials (ASTM). (2014b). Standard test method for air content of freshly mixed concrete by the pressure method. ASTM C231/C231M.
  • American Society for Testing of Materials (ASTM). (2015a). Standard test method for relative sensity (specific gravity) and absorption of coarse aggregate. ASTM C127.
  • American Society for Testing of Materials (ASTM). (2015b). Standard test method for relative density (specific gravity) and absorption of fine aggregate. ASTM C128.
  • American Society for Testing of Materials (ASTM). (2015c). Standard specification for silica fume used in cementitious mixtures. ASTM C1240.
  • American Society for Testing of Materials (ASTM). (2015d). Standard specification for chemical admixtures for concrete. ASTM C494/C494M.
  • American Society for Testing of Materials (ASTM). (2015e). Standard test method for slump of hydraulic-cement concrete. ASTM C143/C143M.
  • American Society for Testing of Materials (ASTM). (2016a). Making and curing concrete specimens in the laboratory. ASTM C192/C192M.
  • American Society for Testing of Materials (ASTM). (2016b). Standard specification for Portland cement. ASTM C150/C150M.
  • American Society for Testing of Materials (ASTM). (2016c). Standard test method for compressive strength of cylindrical specimens. ASTM C39/C39M.
  • Beek, A., Breugel, K., & Hilhorst, M. A. (1999). Monitoring system for hardening concrete based on dielectric properties. Proceedings of the International Conference Utilizing Ready Mix Concrete and Mortar (pp. 303–312). University of Dundee.
  • Chidiac, S. E., Moutassem, F., & Mahmoodzadeh, F. (2013). Compressive strength model for concrete. Magazine of Concrete Research, 65(9), 557–572. https://doi.org/10.1680/macr.12.00167
  • Chiya, Y., Rahimzadeh, A. S., & Barzinjy, A. A. (2022). Systematic multiscale models to predict the compressive strength of cement paste as a function of microsilica and nanosilica contents, water/cement ratio, and curing ages. Sustainability, 14(3), 1723. https://doi.org/10.3390/su14031723
  • de Larrard, F. (1999). Concrete mixture proportioning: A scientific approach. Spon Press.
  • EPA (Environmental Protection Agency). (2020). Emission factor documentation for AP-42, section 11.6 Portland cement manufacturing, AP 42 - compilation of air pollutant emission factors Vol. I: Stationary point and area sources (5th ed.). Washington, DC, 1994; https://www3.epa.gov/ttn/chief/ap42/ch11/bgdocs/b11s06.pdf (accessed 21 March 2020).
  • Feret, R. (1892). Sur la compacité des mortiers hydrauliques (On the compactness of hydraulic mortars). Annales Des Ponts et Chaussées, 7(4), 5–164. https://books.google.ae/books/about/Sur_la_compacit%C3%A9_des_mortiers_hydrauliq.html?id=gPmcPQAACAAJ&redir_esc=y
  • Hooton, R. D., Pun, P., Kojundic, T., & Fidjestol, P. (1997). Influence of silica fume on chloride resistance of concrete. Proceedings of the PCI/FHWA International Symposium on High Performance Concrete (pp. 245–256), New Orleans, LA, USA.
  • Iftikhar, B., Alih, S. C., Vafaei, M., Javed, M. F., Rehman, M. F., Abdullaev, S. S., Tamam, N., Khan, M. I., & Hassan, A. M. (2023). Predicting compressive strength of eco-friendly plastic sand paver blocks using gene expression and artificial intelligence programming. Scientific Reports, 13(1), 12149. https://doi.org/10.1038/s41598-023-39349-2
  • Jaf, D. K. I., Abdulrahman, P. I., Mohammed, A. S., Kurda, R., Qaidi, S. M. A., & Asteris, P. G. (2023). Machine learning techniques and multi-scale models to evaluate the impact of silicon dioxide (SiO2) and calcium oxide (CaO) in fly ash on the compressive strength of green concrete. Construction and Building Materials, 400, 132604. https://doi.org/10.1016/j.conbuildmat.2023.132604
  • Johansen, V., & Andersen, P. J. (1996). Particle packing and concrete properties", materials science of concrete II (pp. 111–147). American Ceramic Society.
  • Larrard, F., & Belloc, A. (1997). The influence of aggregate on the compressive strength of normal and high-strength concrete. ACI Materials Journal, 94(5), 417–425. https://doi.org/10.14359/326
  • Mechling, J. M., Lecomte, A., & Diliberto, C. (2009). Relation between cement composition and compressive strength of pure pastes. Cement and Concrete Composites, 31(4), 255–262. https://doi.org/10.1016/j.cemconcomp.2009.02.009
  • Mehta, P. K., & Monteiro, P. (2006). Concrete: Microstructure, properties, and materials (3rd ed.). McGraw Hill LLC.
  • Montgomery, D. C., & Runger, G. C. (2003). Applied statistics and probability for engineers (3rd ed.). John Wiley and Sons Inc.
  • Moutassem, F. (2010). [Packing density links concrete mixture, rheology, and compressive strength] [PhD dissertation]. McMaster University.
  • Moutassem, F. (2016). Assessment of packing density models and optimizing concrete mixtures. International Journal of Civil, Mechanical and Energy Science, 2(4), 29–36.
  • Moutassem, F. (2020a). Microstructure model for predicting the sorptivity of concrete mixtures. Civil Engineering and Architecture, 8(2), 77–83. https://doi.org/10.13189/cea.2020.080205
  • Moutassem, F. (2020b). Ultra-lightweight EPS concrete: Mixing procedure and predictive models for compressive strength. Civil Engineering and Architecture, 8(5), 963–972. https://doi.org/10.13189/cea.2020.080523
  • Moutassem, F., & Alamara, K. (2021). Design and production of sustainable lightweight concrete precast sandwich panels for non-load bearing partition wall systems. Cogent Engineering, 8(1), 1993565. https://doi.org/10.1080/23311916.2021.1993565
  • Moutassem, F., & Chidiac, S. E. (2016). Assessment of concrete compressive strength predictions methods. KSCE Journal of Civil Engineering, 20(1), 343–358. https://doi.org/10.1007/s12205-015-0722-4
  • Moutassem, F., & Miqdadi, I. (2020). Sustainability-model approach for chloride permeability based on concrete mixture. Structures Journal, Elsevier Publishers, 28, 983–990. https://doi.org/10.1016/j.istruc.2020.09.041
  • Moutassem, F., & Miqdadi, I. (2023). Mathematical model for predicting the ultrasonic pulse velocity of concrete. Cogent Engineering, 10(1), 2199513. https://doi.org/10.1080/23311916.2023.2199513
  • Nafees, A., Amin, M. N., Khan, K., Nazir, K., Ali, M., Javed, M. F., Aslam, F., Musarat, M. A., & Vatin, N. I. (2022). Modeling of mechanical properties of silica fume-based green concrete using machine learning techniques. Polymers, 14(1), 30. https://doi.org/10.3390/polym14010030
  • Pann, K. S., Yen, T., Tang, C. W., & Lin, T. D. (2003). New strength model based on water-cement ratio and capillary porosity. ACI Materials Journal, 100(4), 311–318. https://doi.org/10.14359/12669
  • Pareek, K., & Hong, Y. M. (2020). Prediction of permeability and compressive strength for pervious concrete. IOP Conference Series: Materials Science and Engineering, 812(1), 012013. https://doi.org/10.1088/1757-899X/812/1/012013
  • Popovics, S. (1985). New formulas for the prediction of the effect of porosity on concrete strength. ACI Materials Journal, 82(2), 136–146. https://doi.org/10.14359/10321
  • Popovics, S. (1998). History of a mathematical model for strength development of Portland cement concrete. ACI Materials Journal, 95(5), 593–600. https://doi.org/10.14359/401
  • Popovics, S., & Ujhelyi, J. (2008). Contribution to the concrete strength versus water-cement ratio relationship. Journal of Materials in Civil Engineering, 20(7), 459–463.) https://doi.org/10.1061/(ASCE)0899-1561(2008)20:7(459)
  • Powers, T. C., & Brownyard, T. L. (1960). Studies of the physical properties of hardened Portland cement paste. Proceedings of the American Concrete Institute, 18(2), 669–712.
  • Quiroga, P. (2003). [The effect of the aggregate characteristics on the performance of Portland cement concrete] [Ph.D. dissertation]. The University of Texas at Austin.
  • Rasmussen, R. O., Ruiz, J. M., Rozycki, D. K., & McCullough, B. F. (2002). Constructing high-performance concrete pavements with FHWA HIPERPAV systems analysis software. Transportation Research Record: Journal of the Transportation Research Board, 1813(1), 11–20. https://doi.org/10.3141/1813-02
  • Schindler, A. K., & Folliard, K. J. (2015). Heat of hydration models for cementitious materials. ACI Materials Journal, 102(1), 24–33. https://doi.org/10.14359/14246
  • Seifan, M., Mendoza, S., & Berenjian, A. (2020). Mechanical properties and durability performance of fly ash based mortar containing nano and micro-silica additives. Journal of Construction and Building Materials, 252, 119121. https://doi.org/10.1016/j.conbuildmat.2020.119121
  • Tango, C. E. S. (2000). Time-generalisation of Abrams’ model for high performance concrete and practical application examples. Proceedings of the International Symposium on High Performance Concrete, Hong Kong University of Science and Technology.
  • Tasi, C. T., Li, S., & Hwang, C. L. (2006). The effect of aggregate gradation on engineering properties of high performance concrete. Journal of ASTM International, 3(3), 1–12. https://doi.org/10.1520/JAI13410
  • Toufar, W., Born, M., & Klose, E. (1976). Contribution of optimization of components of different density in polydispersed particles systems. Freiberger Booklet A, 558, 29–24.
  • Wong, H., & Kwan, A. (2005). Packing density: A key concept for mix design of high performance concrete. Proceedings of Materials Science and Technology in Engineering Conference (MaSTEC). Hong Kong.
  • Zrar, Y. J., Abdulrahman, P. I., Sherwani, A. F. H., Younis, K. H., & Mohammed, A. S. (2024). Sustainable innovation in self-compacted concrete: Integrating by-products and waste rubber for green construction practices. Structures, 62, 106234. https://doi.org/10.1016/j.istruc.2024.106234