93
Views
0
CrossRef citations to date
0
Altmetric
Production and Manufacturing

Modelling and optimization based on RSM in dry turning parameters of AISI H13 steel using novel hybrid design texture tool

, &
Article: 2375427 | Received 08 Dec 2023, Accepted 02 Jun 2024, Published online: 14 Jul 2024

References

  • Arulkirubakaran, D., Senthilkumar, V., & Kumawat, V. (2016). Effect of micro-textured tools on machining of Ti–6Al–4V alloy: An experimental and numerical approach. International Journal of Refractory Metals and Hard Materials, 54, 165–177. https://doi.org/10.1016/j.ijrmhm.2015.07.027
  • Bartarya, G., & Choudhury, S. K. (2012). State of the art in hard turning. International Journal of Machine Tools and Manufacture, 53(1), 1–14. https://doi.org/10.1016/j.ijmachtools.2011.08.019
  • Benkhelifa, O., Cherfia, A., & Nouioua, M. (2022). Modeling and multi-response optimization of cutting parameters in turning of AISI 316L using RSM and desirability function approach. The International Journal of Advanced Manufacturing Technology, 122(3–4), 1987–2002. https://doi.org/10.1007/s00170-022-10044-2
  • Bibeye Jahaziel, R., Krishnaraj, V., & Geetha Priyadarshini, B. (2022). Investigation on influence of micro-textured tool in machining of Ti-6Al-4V alloy. Journal of Mechanical Science and Technology, 36(4), 1987–1995. https://doi.org/10.1007/s12206-022-0334-0
  • Boucherit, S., Berkani, S., Yallese, M. A., Khettabi, R., & Mabrouki, T. (2020). Modeling and optimization of cutting parameters during machining of austenitic stainless steel AISI304 using RSM and desirability approach. Periodica Polytechnica Mechanical Engineering, 65(1), 10–26. https://doi.org/10.3311/PPme.12241
  • Das, A., Kamal, M., Das, S. R., Patel, S. K., Panda, A., Rafighi, M., & Biswal, B. B. (2021). Comparative assessment between AlTiN and AlTiSiN coated carbide tools towards machinability improvement of AISI D6 steel in dry hard turning. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(6), 3174–3197. https://doi.org/10.1177/09544062211037373
  • Gajrani, K. K., Pavan, R., Reddy, K., & Sankar, M. R. (2018). Tribo-mechanical and surface morphological comparison of untextured, mechanical micro-textured (M k T), and coated-M k T cutting tools during machining. Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology, 233(1), 95–111. https://doi.org/10.1177/1350650118764975
  • Grellier, A., & Siaut, M. (2002). A new hot work tool steel for high temperature and high stress service conditions [Paper presentation]. 6th International Tooling Conference (pp. 39–48). Karlstad, Sweden, 10–13 September 2002.
  • Khani, S., Haghighi, S. S., Razfar, M. R., & Farahnakian, M. (2022). Optimization of dimensional accuracy in threading process using solid-lubricant embedded textured tools. Materials and Manufacturing Processes, 37(3), 294–304. https://doi.org/10.1080/10426914.2021.1926492
  • Khani, S., Razfar, M. R., Haghighi, S. S., & Farahnakian, M. (2020). Optimization of microtextured tools parameters in thread turning process of aluminum 7075 aerospace alloy. Materials and Manufacturing Processes, 35(12), 1330–1338. https://doi.org/10.1080/10426914.2020.1772485
  • Kishawy, H. A., Salem, A., Hegab, H., Hosseini, A., & Balazinski, M. (2021). CIRP annals - manufacturing technology micro-textured cutting tools: Phenomenological analysis and design recommendations. CIRP Annals, 70(1), 65–68. https://doi.org/10.1016/j.cirp.2021.04.081
  • Kumar, P., & Chauhan, S. R. (2015). Machinability study on finish turning of AISI H13 hot working die tool steel with cubic boron nitride (CBN) cutting tool inserts using response surface methodology (RSM). Arabian Journal for Science and Engineering, 40(5), 1471–1485. https://doi.org/10.1007/s13369-015-1606-0
  • Kumar, R., Sahoo, A. K., Mishra, P. C., & Das, R. K. (2018). Comparative study on machinability improvement in hard turning using coated and uncoated carbide inserts: Part II modeling, multi-response optimization, tool life, and economic aspects. Advances in Manufacturing, 6(2), 155–175. https://doi.org/10.1007/s40436-018-0214-0
  • Liu, G., Özel, T., Li, J., Wang, D., & Sun, S. (2020). Optimization and fabrication of curvilinear micro-grooved cutting tools for sustainable machining based on finite element modelling of the cutting process. The International Journal of Advanced Manufacturing Technology, 110(5–6), 1327–1338. https://doi.org/10.1007/s00170-020-05906-6
  • Liu, X., & Zhang, X. (2022). Numerical analysis of the performance of half oval micro-textured/grooved cutting tool in machining of Ti-6Al-4V. The International Journal of Advanced Manufacturing Technology, 118(1–2), 433–447. https://doi.org/10.1007/s00170-021-07794-w
  • Martowibowo, S. Y., & Damanik, B. K. (2021). Optimization of material removal rate and surface roughness of AISI 316L under dry turning process using genetic algorithm. Manufacturing Technology, 21(3), 373–380. https://doi.org/10.21062/mft.2021.038
  • Mishra, S. K., Ghosh, S., & Aravindan, S. (2019). Performance of laser processed carbide tools for machining of Ti6Al4V alloys: A combined study on experimental and finite element analysis. Precision Engineering, 56(1), 370–385. https://doi.org/10.1016/j.precisioneng.2019.01.006
  • Montgomery, D. C. (2019). Design and analysis of experiments (10th ed., pp. 0–688). Wiley.
  • Outeiro, J. C., & Paris, R. P. D. (2014). Surface integrity predictions and optimisation of machining conditions in the turning of AISI H13 tool steel. International Journal of Machining and Machinability of Materials, 15(1/2), 122–134. https://doi.org/10.1504/IJMMM.2014.059189
  • Ranjan, P., & Hiremath, S. S. (2019). Role of textured tool in improving machining performance: A review. Journal of Manufacturing Processes, 43(5), 47–73. https://doi.org/10.1016/j.jmapro.2019.04.011
  • Roy, R. S., Dash, S., Mahapatra, T. R., Mishra, D., & Jaypuria, S. (2021). Cutting performance analysis of surface textured tools in dry turning: Optimisation of process parameters [Paper presentation]. E3S Web of Conferences (p. 309). https://doi.org/10.1051/e3sconf/202130901164
  • Şahinoğlu, A., & Rafighi, M. (2020). Optimization of cutting parameters with respect to roughness for machining of hardened AISI 1040 steel. Materials Testing, 62(1), 85–95. https://doi.org/10.3139/120.111458/HTML
  • Sharma, V., & Pandey, P. M. (2016). Geometrical design optimization of hybrid textured self-lubricating cutting inserts for turning 4340 hardened steel. The International Journal of Advanced Manufacturing Technology, 89(5–8), 1575–1589. https://doi.org/10.1007/s00170-016-9163-6
  • Siju, A. S., Gajrani, K. K., & Joshi, S. S. (2021). Dual textured carbide tools for dry machining of titanium alloys. International Journal of Refractory Metals and Hard Materials, 94, 105403. https://doi.org/10.1016/j.ijrmhm.2020.105403
  • Singh, R., Dureja, J. S., Dogra, M., & Randhawa, J. S. (2019). Optimization of machining parameters under MQL turning of Ti-6Al-4V alloy with textured tool using multi-attribute decision-making methods. World Journal of Engineering, 16(5), 648–659. https://doi.org/10.1108/WJE-06-2019-0170
  • Singh, R., Gupta, M. K., Sarikaya, M., Mia, M., & Garcia-Collado, A. (2021). Evaluation of machinability-based sustainability indicators in the eco-benign turning of Ti3Al2.5V alloy with textured tools. The International Journal of Advanced Manufacturing Technology, 116(9–10), 3051–3061. https://doi.org/10.1007/s00170-021-07667-2
  • Singh, B. K., Roy, H., Mondal, B., Roy, S. S., & Mandal, N. (2019). Measurement of chip morphology and multi criteria optimization of turning parameters for machining of AISI 4340 steel using Y-ZTA cutting insert. Measurement, 142, 181–194. https://doi.org/10.1016/j.measurement.2019.04.064
  • Sivaiah, P., & Chakradhar, D. (2018). Analysis and modeling of cryogenic turning operation using response surface methodology. Silicon, 10(6), 2751–2768. https://doi.org/10.1007/s12633-018-9816-1
  • Sivaiah, P., Venkata Ajay Kumar, G., Lakshmi Narasimhamu, K., & Siva Balaji, N. (2022). Performance improvement of turning operation during processing of AISI 304 with novel textured tools under minimum quantity lubrication using hybrid optimization technique. Materials and Manufacturing Processes, 37(6), 693–700. https://doi.org/10.1080/10426914.2021.1967977
  • Soni, H., & Mashinini, P. M. (2021). An analysis on tool-chip interaction during dry machining of SS316 using textured carbide tools. Arabian Journal for Science and Engineering, 46(8), 7611–7621. https://doi.org/10.1007/s13369-021-05499-6
  • Suresh, R., Basavarajappa, S., Gaitonde, V. N., Samuel, G. L., & Davim, J. P. (2013). State-of-the-art research in machinability of hardened steels. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227(2), 191–209. https://doi.org/10.1177/0954405412464589
  • Touggui, Y., Belhadi, S., Mechraoui, S. E., Uysal, A., Yallese, M. A., & Temmar, M. (2020). Multi-objective optimization of turning parameters for targeting surface roughness and maximizing material removal rate in dry turning of AISI 316L with PVD-coated cermet insert. SN Applied Sciences, 2(8), 1–14. https://doi.org/10.1007/s42452-020-3167-4
  • Zheng, K., Yang, F., Pan, M., Zhao, G., & Bian, D. (2021). Effect of surface line/regular hexagonal texture on tribological performance of cemented carbide tool for machining Ti-6Al-4V alloys. The International Journal of Advanced Manufacturing Technology, 116(9–10), 3149–3162. https://doi.org/10.1007/s00170-021-07636-9