0
Views
0
CrossRef citations to date
0
Altmetric
Civil Engineering

Unlocking the potential of graphene oxide as an early strength enhancer for geopolymer well cement in extreme downhole environment

ORCID Icon, , , , , , , & show all
Article: 2380021 | Received 13 Sep 2023, Accepted 10 Jul 2024, Published online: 23 Jul 2024

References

  • Abdullah, M. M. A., Kamaruddin, H., Abdulkareem, O. A., Ghazali, C. M. R., Rafiza, A. R., & Norazian, M. N. (2012). Optimization of alkaline activator/fly ash ratio on the compressive strength of manufacturing fly ash-based geopolymer. Applied Mechanics and Materials, 110–116, 734–739. https://doi.org/10.4028/www.scientific.net/AMM.110-116.734
  • API RP 10B-2: Recommended practice for testing well cements (2nd ed.). Washington, USA: American Petroleum Institute (API).
  • ASTM C618–19: Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken, PA, USA: ASTM International.
  • Aziz, M., Hamza, M., Rasool, A. M., Ali, U., Ahmed, T., Kharal, Z. N., Khan, A. H., & Rehman, Z. (2023). Use of graphene oxide nanomaterial to improve mechanical properties of cement-treated silty soil. Arabian Journal for Science and Engineering, 48(4), 5603–5618. https://doi.org/10.1007/s13369-022-07530-w
  • Gao, Y., Jing, H., Fu, G., Zhao, Z., & Shi, X. (2021). Studies on combined effects of graphene oxide-fly ash hybrid on the workability, mechanical performance and pore structures of cementitious grouting under high W/C ratio. Construction and Building Materials, 281, 122578. https://doi.org/10.1016/j.conbuildmat.2021.122578
  • Gholampour, A., & Ozbakkaloglu, T. (2022). Waste-based mortars containing glass powder, GGBS, lead smelter slag and foundry sand reinforced with graphene oxide. Magazine of Concrete Research, 74(23), 1189–1203. https://doi.org/10.1680/jmacr.21.00185
  • Gong, K., Pan, Z., Korayem, A. H., Qiu, L., Li, D., Collins, F., Wang, C. M., & Duan, W. H. (2014). Reinforcing effects of graphene oxide on portland cement paste. Journal of Materials in Civil Engineering, 27(2), A4013010. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001125
  • Ikram, R., Jan, B. M., Ahmad, W., Sidek, A., Khan, M., & Kenanakis, G. (2022). Rheological investigation of welding waste-derived graphene oxide in water-based drilling fluids. Materials, 15(22), 8266. https://doi.org/10.3390/ma15228266
  • Joshi, S., & Kadu, M. (2012). Role of alkaline activator in development of eco-friendly fly ash based geo polymer concrete. International Journal of Environmental Science and Development, 3(5), 417–421. https://doi.org/10.7763/IJESD.2012.V3.258
  • Kanesan, D., Irawan, S., Suppiah, R. R., & Kunaisekaran, T. A. (2018). Formulation of geopolymer cement using Class F fly ash for oil well cementing application. International Journal of Applied Engineering Research, 13(6), 3598–3604.
  • Kaur, R., Kothiyal, N., & Arora, H. (2020). Studies on combined effect of superplasticizer modified graphene oxide and carbon nanotubes on the physico-mechanical strength and electrical resistivity of fly ash blended cement mortar. Journal of Building Engineering, 30, 101304. https://doi.org/10.1016/j.jobe.2020.101304
  • Khed, V. C., Pesaralanka, V., Adamu, M., Ibrahim, Y. E., Azab, M., Reddy, M. A. K., Hakamy, A., & Deifalla, A. F. (2022). Optimization of graphene oxide incorporated in fly ash-based self-compacting concrete. Buildings, 12(11), 2002. https://doi.org/10.3390/buildings12112002
  • Kosynkin, D. V., Ceriotti, G., Wilson, K. C., Lomeda, J. R., Scorsone, J. T., Patel, A. D., Friedheim, J. E., & Tour, J. M. (2012). Graphene oxide as a high-performance fluid-loss-control additive in water-based drilling fluids. ACS Applied Materials & Interfaces, 4(1), 222–227. https://doi.org/10.1021/am2012799
  • Li, W., Li, X., Chen Su, J., Long, G., Liu Yan, M., & Duan Wen, H. (2017). Effects of nanoalumina and graphene oxide on early-age hydration and mechanical properties of cement paste. Journal of Materials in Civil Engineering, 29(9), 04017087. https://doi.org/10.1061/(ASCE)MT.1943-5533.000192
  • Lv, S., Ma, Y., Qiu, C., Sun, T., Liu, J., & Zhou, Q. (2013). Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Construction and Building Materials, 49, 121–127. https://doi.org/10.1016/j.conbuildmat.2013.08.022
  • Manikanta, D., Ravella, D. P., Sri Rama Chand, M., & Janardhan Yadav, M. (2021). Mechanical and durability characteristics of high performance self-compacting concrete containing flyash, silica fume and graphene oxide. Materials Today, 43(2), 2361–2367. https://doi.org/10.1016/j.matpr.2021.01.684
  • Massion, C., MercyAchang, Bour, D., & Radonjic, M. (2020). Graphene-enhanced wellbore cement: Improving cement performance in the construction of geothermal wellbores. GRC Transactions, 44, 67–81.
  • Mohotti, D.; Mendis, P.; Wijesooriya, K.; Fonseka, I.; Weerasinghe, D.; Lee, C. Abrasion and strength of high percentage graphene oxide (go) incorporated concrete. Electronic Journal of Structural Engineering. 2022, 22(01), 37–43, . https://doi.org/10.56748/ejse.2233001
  • Palomo, A., Grutzeck, M., & Blanco, M. (1999). Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research, 29(8), 1323–1329. https://doi.org/10.1016/S0008-8846(98)00243-9
  • Pan, Z., He, L., Qiu, L., Korayem, A. H., Li, G., Zhu, J. W., Collins, F., Li, D., Duan, W. H., & Wang, M. C. (2015). Mechanical properties and microstructure of a graphene oxide–cement composite. Cement and Concrete Composites, 58, 140–147. https://doi.org/10.1016/j.cemconcomp.2015.02.001
  • Petermann, J. C., Saeed, A., & Hammons, M. I. (2010). Alkali-activated geopolymers: A literature review. Panama City, FL, USA: Applied Research Associates Inc.
  • Rafati, R., Smith, S. R., Haddad, A. S., Novara, R., & Hamidi, H. (2018). Effect of nanoparticles on the modifications of drilling fluids properties: A review of recent advances. Journal of Petroleum Science and Engineering, 161, 61–76. https://doi.org/10.1016/j.petrol.2017.11.067
  • Rajesh, A. M., Joe, M. A., & Mammen, R. (2014). Study of the strength geopolymer concrete with alkaline solution of varying molarity. IOSR Journal of Engineering, 4(6), 2250–3021.
  • Somasri, M., & Kumar, B. N. (2021). Influence of graphene oxide as advanced nanomaterial on fly ash and silica fume-based high-strength self-compacting concrete. In: Biswas, S., Metya, S., Kumar, S., Samui, P. (Eds.), Advances in sustainable construction materials. Lecture notes in civil engineering (Vol. 124). Singapore: Springer. https://doi.org/10.1007/978-981-33-4590-4_59
  • Srinivasan, K., & Sivakumar, A. (2013). Geopolymer binders: A need for future concrete construction. International Scholarly Research Notices, 2013, 1–8. https://doi.org/10.1155/2013/509185
  • Zulkarnain, N. N., Farhan, S. A., Sazali, Y. A., Shafiq, N., Abd Rahman, S. H., Abd Hamid, A. I., & Habarudin, M. F. (2021). Reducing the waiting-on-cement time of geopolymer well cement using calcium chloride (CaCl2) as the accelerator: Analysis of the compressive strength and acoustic impedance for well logging. Sustainability, 13(11), 6128. https://doi.org/10.3390/su13116128