21,803
Views
27
CrossRef citations to date
0
Altmetric
Review Article

Plant and bacterial proteases: A key towards improving meat tenderization, a mini review

, , , , , , ORCID Icon, & | (Reviewing Editor) show all
Article: 1261780 | Received 29 Sep 2016, Accepted 02 Nov 2016, Published online: 16 Jan 2017

References

  • Abdel-Naeem, H. H., & Mohamed, H. M. (2016). Improving the physico-chemical and sensory characteristics of camel meat burger patties using ginger extract and papain. Meat Science, 118, 52–60.10.1016/j.meatsci.2016.03.021
  • Akpan, I. P., & Omojola, A. B. (2015). Quality attributes of crude papain injected beef. Journal of Meat Science and Technology, 3, 42–46.
  • Anderson, M. J., Lonergan, S. M., Fedler, C. A., Prusa, K. J., Binning, J. M., & Huff-Lonergan, E. (2012). Profile of biochemical traits influencing tenderness of muscles from the beef round. Meat Science, 91, 247–254.10.1016/j.meatsci.2012.01.022
  • Ashie, I. N. A., Sorensen, T. L., & Nielsen, P. M. (2002). Effects of papain and a microbial enzyme on meat proteins and beef tenderness. Journal of Food Science, 67, 2138–2142.10.1111/jfds.2002.67.issue-6
  • Bekhit, A. A., Hopkins, D. L., Geesink, G., Bekhit, A. A., & Franks, P. (2014). Exogenous proteases for meat tenderization. Critical Reviews in Food Science and Nutrition, 54, 1012–1031.10.1080/10408398.2011.623247
  • Bekhit, A. E. D. (2010). Fermentation of Fish Roe. In D. R. Heldman, D. G. Hoover, & M. B. Wheeler (Eds.), Encyclopedia of biotechnology in agriculture and food (vol. 1, pp. 251–256). Boca Raton, FL: Taylor & Francis Group.10.1081/E-EBAF
  • Berger, A., & Schechter, I. (1970). Mapping the active site of papain with the aid of peptide substrates and inhibitors. Philosophical Transactions of the Royal Society B: Biological Sciences, 257, 249–264.10.1098/rstb.1970.0024
  • Bolumar, T., Enneking, M., Toepfl, S., & Heinz, V. (2013). New developments in shockwave technology intended for meat tenderization: Opportunities and challenges. A review. Meat Science, 95, 931–939.10.1016/j.meatsci.2013.04.039
  • Breidenstein, B. C., & Carpenter, Z. L. (1983). The red meat industry: Product and consumerism. Journal of Animal Science, 57, 119–132.
  • Calkin, C. R., & Sullivan, G. (2007). Adding enzymes to improve beef tenderness. Beef fact. Product enhancement. Lincoln, NE: University of Nebraska.
  • Camou, J. P., Mares, S. W., Marchello, J. A., Vazquez, R., Taylor, M., Thompson, V. F., & Goll, D. E. (2007). Isolation and characterization of μ-calpain, m-calpain, and calpastatin from postmortem muscle. I. Initial steps. Journal of Animal Science, 85, 3400–3414.10.2527/jas.2007-0356
  • Chaurasiya, R. S., Sakhare, P. Z., Bhaskar, N., & Hebbar, H. U. (2015). Efficacy of reverse micellar extracted fruit bromelain in meat tenderization. Journal of Food Science and Technology, 52, 870–880.
  • Chen, Q. H., He, G. Q., Jiao, Y. C., & Ni, H. (2006). Effects of elastase from a Bacillus strain on the tenderisation of beef meat. Food Chemistry, 98, 624–629.
  • Cheret, R., Delbarreladrat, C., Lamballerieanton, M., & Verrezbagnis, V. (2007). Calpain and cathepsin activities in post mortem fish and meat muscles. Food Chemistry, 101, 1474–1479.10.1016/j.foodchem.2006.04.023
  • Dransfield, E., & Etherington, D. (1981). Enzymes in the tenderization of Meat. In G. G. Birch, N. Blakebrough, & K. J. Parker (Eds.), Enzymes and Food Processing (pp. 177–194). London: Applied Science.
  • Eshamah, H., Han, I., Naas, H., Acton, J., & Dawson, P. (2014). Antibacterial effects of natural tenderizing enzymes on different strains of Escherichia coli O157: H7 and Listeria monocytogenes on beef. Meat Science, 96, 1494–1500.10.1016/j.meatsci.2013.12.010
  • Fileti, A. M. F., Fischer, G. A., & Tambourgi, E. B. (2010). Neural modeling of bromelain extraction by reversed micelles. Brazilian Archives of Biology and Technology, 53, 455–463.10.1590/S1516-89132010000200026
  • FDA. (2001). Secondary direct food additives permitted in food for human consumption. Federal Register, 66, 33829–33830.
  • Garg, V., & Mendiratta, S. K. (2006). Studies on tenderization and preparation of enrobed pork chunks in microwave oven. Meat Science, 74, 718–726.10.1016/j.meatsci.2006.06.003
  • Geesink, G. H., & Koohmaraie, M. (1999). Postmortem proteolysis and calpain/calpastatin activity in callipyge and normal lamb biceps femoris during extended postmortem storage. Journal of Animal Science, 77, 1490–1501.10.2527/1999.7761490x
  • Geesink, G. H., Taylor, R. G., & Koohmaraie, M. (2005). Calpain 3/p94 is not involved in postmortem proteolysis. Journal of Animal Science, 83, 1646–1652.10.2527/2005.8371646x
  • Gelse, K., Pöschl, E., & Aigner, T. (2003). Collagens-structure, function, and biosynthesis. Advanced Drug Delivery Reviews, 55, 1531–1546.10.1016/j.addr.2003.08.002
  • Gerelt, B., Rusman, H., Nishiumi, T., & Suzuki, A. (2005). Changes in calpain and calpastatin activities of osmotically dehydrated bovine muscle during storage after treatment with calcium. Meat Science, 70, 55–61.10.1016/j.meatsci.2004.11.020
  • Goll, D. E., Thompson, V. F., Li, H., Wei, W., & Cong, J. (2003). The calpain system. Physiological Reviews, 83, 731–801.10.1152/physrev.00029.2002
  • Grunert, K. G., Bredahl, L., & Brunsø, K. (2004). Consumer perception of meat quality and implications for product development in the meat sector—A review. Meat Science, 66, 259–272.10.1016/S0309-1740(03)00130-X
  • Grzonka, Z., Kasprzykowski, F., & Wiczk, W. (2007). Cysteine proteases. In J. Polaina & A. P. MacCabe (Eds.), Industrial enzymes structure, Function and Applications (pp. 181–195). Dordrecht: Springer.
  • Ha, M., Bekhit, A. E. A., Carne, A., & Hopkins, D. L. (2012). Characterisation of commercial papain, bromelain, actinidin and zingibain protease preparations and their activities toward meat proteins. Food Chemistry, 134, 95–105.10.1016/j.foodchem.2012.02.071
  • Ha, M., Bekhit, A. E. D., Carne, A., & Hopkins, D. L. (2013). Comparison of the proteolytic activities of new commercially available bacterial and fungal proteases toward meat proteins. Journal of Food Science, 78, C170–C177.10.1111/jfds.2013.78.issue-2
  • Huff-Lonergan, E., & Lonergan, S. M. (2005). Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Science, 71, 194–204.10.1016/j.meatsci.2005.04.022
  • Huff-Lonergan, E., Mitsuhashi, T., Beekman, D. D., Parrish, F. C., Olson, D. G., & Robson, R. M. (1996). Proteolysis of specific muscle structural proteins by mu-calpain at low pH and temperature is similar to degradation in postmortem bovine muscle. Journal of Animal Science, 74, 993–1008.10.2527/1996.745993x
  • Ionescu, R. E., Fillit, C., Jaffrezic-Renault, N., & Cosnier, S. (2008). Urease–gelatin interdigitated microelectrodes for the conductometric determination of protease activity. Biosensors and Bioelectronics, 24, 489–492.10.1016/j.bios.2008.06.021
  • Islam, M. N., & Molinar-Toribio, E. M. (2013). Development of a meat tenderizer based on papaya peel. Observación por Pares Basada en Mapas Conceptuales: Una Estrategia para Fomentar el “Scholarship of Teaching and Learning” en la Universidad Tecnológica de Panamá, 24.
  • Kamphuis, I. G., Kalk, K. H., Swarte, M. B. A., & Drenth, J. (1984). Structure of papain refined at 1.65 Å resolution. Journal of Molecular Biology, 179, 233–256.10.1016/0022-2836(84)90467-4
  • Kemp, C. M., & Parr, T. (2012). Advances in apoptotic mediated proteolysis in meat tenderisation. Meat Science, 92, 252–259.10.1016/j.meatsci.2012.03.013
  • Kemp, C. M., Sensky, P. L., Bardsley, R. G., Buttery, P. J., & Parr, T. (2010). Tenderness—An enzymatic view. Meat Science, 84, 248–256.10.1016/j.meatsci.2009.06.008
  • Ketnawa, S., & Rawdkuen, S. (2011). Application of bromelain extract for muscle foods tenderization. Food and Nutrition Sciences, 2, 393–401.10.4236/fns.2011.25055
  • Ketnawa, S., Rawdkuen, S., & Chaiwut, P. (2010). Two phase partitioning and collagen hydrolysis of bromelain from pineapple peel Nang Lae cultivar. Biochemical Engineering Journal, 52, 205–211.10.1016/j.bej.2010.08.012
  • Konno, K., Hirayama, C., Nakamura, M., Tateishi, K., Tamura, Y., Hattori, M., & Kohno, K. (2004). Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. The Plant Journal, 37, 370–378.10.1046/j.1365-313X.2003.01968.x
  • Koohmaraie, M. (1992). Role of the neutral proteinases in postmortem muscle protein degradation and meat tenderness. Reciprocal Meat Conference Proceedings, 45, 63–74.
  • Koohmaraie, M. (1996). Biochemical factors regulating the toughening and tenderization processes of meat. Meat Science, 43, 193–201.10.1016/0309-1740(96)00065-4
  • Koohmaraie, M., & Geesink, G. H. (2006). Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Science, 74, 34–43.10.1016/j.meatsci.2006.04.025
  • Koohmaraie, M., Shackelford, S. D., Muggli-Cockett, N. E., & Stone, R. T. (1991). Effect of the beta-adrenergic agonist L644, 969 on muscle growth, endogenous proteinase activities, and postmortem proteolysis in whether lambs. Journal of Animal Science, 69, 4823–4835.10.2527/1991.69124823x
  • Lantto, R., Kruus, K., Puolanne, E., Honkapää, K., Roininen, K., & Buchert, J. (2009). 12 Enzymes in meat processing. In Robert J. Whitehurst, & Maarten van Oort (Eds.), Enzymes in food technology (2nd ed., pp. 264–291). Hoboken, NJ: Blackwell.
  • Liu, F. Y., Liao, J. S., Qi, J. R., & Tang, P. F. (2008). The industry development of papain and bromelain. Science and Technology of Food Industry, 7, 091.
  • Lonergan, S. M., Huff-Lonergan, E., Wiegand, B. R., & Kriese-Anderson, L. A. (2001). Postmortem proteolysis and tenderization of top loin steaks from brangus cattle. Journal of Muscle Foods, 12, 121–136.10.1111/jmf.2001.12.issue-2
  • Maiti, A. K., Ahlawat, S. S., Sharma, D. P., & Khanna, N. (2008). Application of natural tenderizers in meat-a review. Agriculture Review, 29, 226–230.
  • Maróstica, M. R., & Pastore, G. M. (2010). Some nutritional, technological and environmental advances in the use of enzymes in meat products. Enzyme Research, 1–8. doi:10.4061/2010/480923
  • Mennecke, B. E., Townsend, A. M., Hayes, D. J., & Lonergan, S. M. (2007). A study of the factors that influence consumer attitudes toward beef products using the conjoint market analysis tool. Journal of Animal Science, 85, 2639–2659.10.2527/jas.2006-495
  • Naveena, B. M., Kiran, M., Reddy, K. S., Ramakrishna, C., Vaithiyanathan, S., & Devatkal, S. K. (2011). Effect of ammonium hydroxide on ultrastructure and tenderness of buffalo meat. Meat Science, 88, 727–732.10.1016/j.meatsci.2011.03.005
  • Naveena, B. M., Mendiratta, S. K., & Anjaneyulu, A. S. R. (2004). Tenderization of buffalo meat using plant proteases from Cucumis trigonus Roxb (Kachri) and Zingiber officinale roscoe (Ginger rhizome). Meat Science, 68, 363–369.10.1016/j.meatsci.2004.04.004
  • Payne, C. T. (2009). Enzymes. In R. Tarté (Ed.), Ingredients in meat products (pp. 173–198). New York, NY: Springer Science + Business Media, LLC.10.1007/978-0-387-71327-4
  • Ramezani, R., Aminlari, M., & Fallahi, H. (2003). Effect of chemically modified soy proteins and ficin-tenderized meat on the quality attributes of sausage. Journal of Food Science, 68, 85–88.10.1111/jfds.2003.68.issue-1
  • Rawdkuen, S., Jaimakreu, M., & Benjakul, S. (2013). Physicochemical properties and tenderness of meat samples using proteolytic extract from Calotropis procera latex. Food Chemistry, 136, 909–916.10.1016/j.foodchem.2012.08.077
  • Ryder, K., Ha, M., Bekhit, A. E. D., & Carne, A. (2015). Characterisation of novel fungal and bacterial protease preparations and evaluation of their ability to hydrolyse meat myofibrillar and connective tissue proteins. Food Chemistry, 172, 197–206.10.1016/j.foodchem.2014.09.061
  • Smith, J., & Hong-Shum, L. (2003). Gases. Food additives data book (2nd ed., pp. 581–596). Hoboken, NJ: Wiley-Blackwell
  • Starley, I. F., Mohammed, P., Schneider, G., & Bickler, S. W. (1999). The treatment of paediatric burns using topical papaya. Burns, 25, 636–639.10.1016/S0305-4179(99)00056-X
  • Tarté, R. (Ed.). (2009). Ingredients in meat products. New York, NY: Springer Science & Business Media.10.1007/978-0-387-71327-4
  • Taylor, R. G., Geesink, G. H., Thompson, V. F., Koohmaraie, M., & Goll, D. E. (1995). Is Z-disk degradation responsible for postmortem tenderization? Journal of Animal Science, 73, 1351–1367.10.2527/1995.7351351x
  • Toohey, E. S., Kerr, M. J., van de Ven, R., & Hopkins, D. L. (2011). The effect of a kiwi fruit based solution on meat traits in beef m. semimembranosus (topside). Meat Science, 88, 468–471.10.1016/j.meatsci.2011.01.028
  • Varughese, K. I., Su, Y., Cromwell, D., Hasnain, S., & Nguyen Huu Xuong, N. H. (1992). Crystal structure of an actinidin-E-64 complex. Biochemistry, 31, 5172–5176.10.1021/bi00137a012
  • Veiseth, E., Shackelford, S. D., Wheeler, T. L., & Koohmaraie, M. (2001). Effect of postmortem storage on mu-calpain and m-calpain in ovine skeletal muscle. Journal of Animal Science, 79, 1502–1508.10.2527/2001.7961502x
  • Wada, M., Suzuki, T., Yaguti, Y., & Hasegawa, T. (2002). The effects of pressure treatments with kiwi fruit protease on adult cattle semitendinosus muscle. Food Chemistry, 78, 167–171.10.1016/S0308-8146(01)00395-8
  • Wendt, A., Thompson, V. F., & Goll, D. E. (2004). Interaction of calpastatin with calpain: A review. Biological Chemistry, 385, 465–472.
  • Yeh, C.-M., Yang, M.-C., & Tsai, Y.-C. (2002). Application potency of engineered G159 mutants on P1 substrate pocket of subtilisin YaB as improved meat tenderizers. Journal of Agricultural and Food Chemistry, 50, 6199–6204.10.1021/jf0256889
  • Zhang, W., Xiao, S., & Ahn, D. U. (2013). Protein oxidation: Basic principles and implications for meat quality. Critical Reviews in Food Science and Nutrition, 53, 1191–1201.10.1080/10408398.2011.577540