15,005
Views
48
CrossRef citations to date
0
Altmetric
Research Article

Soil fertility challenges and Biofertiliser as a viable alternative for increasing smallholder farmer crop productivity in sub-Saharan Africa

, & ORCID Icon | (Reviewing Editor)
Article: 1400933 | Received 23 Aug 2017, Accepted 30 Oct 2017, Published online: 17 Nov 2017

References

  • Abbas, I. (2016). The effect of neem leaves and poultry manure in soil amendments on the growth and yield of cucumber in Ohawu. Hamburg: Anchor Academic Publishing.
  • Abdel-Aziz, O. (2004). Bioremediation of soil contaminated with some heavy metals using nuclear techniques (Master’s thesis). Al Azhar University, Egypt, INIS. Retrieved from http://inis.iaea.org/search/search.aspx?orig_q=RN:37089663
  • Abdullah, F. A., & Samah, B. A. (2013). Factors impinging farmers’ use of agriculture technology. Asian Social Science, 9(3), 120.
  • Abe, S. S., Buri, M. M., Issaka, R. N., Kiepe, P., & Wakatsuki, T. (2010). Soil fertility potential for rice production in West African Lowlands. Japan Agricultural Research Quarterly: JARQ, 44(4), 343–355.10.6090/jarq.44.343
  • Adeleke, R. A., Cloete, T. E., Bertrand, A., & Khasa, D. P. (2010). Mobilisation of potassium and phosphorus from iron ore by ectomycorrhizal fungi. World Journal of Microbiology and Biotechnology, 26(10), 1901–1913.10.1007/s11274-010-0372-0
  • Adeleke, R., Cloete, E., & Khasa, D. (2010). Isolation and identification of iron ore-solubilising fungus. South African Journal of Science, 106(9–10), 1–6.
  • Adeleke, R., Cloete, T., & Khasa, D. (2012). Culturable microorganisms associated with Sishen iron ore and their potential roles in biobeneficiation. World Journal of Microbiology and Biotechnology, 28(3), 1057–1070.10.1007/s11274-011-0904-2
  • Adeleke, R., & Dames, J. F. (2014). Kalaharituber pfeilii and associated bacterial interactions. South African Journal of Botany, 90, 68–73.10.1016/j.sajb.2013.10.003
  • Adeleke, R., Nwangburuka, C., & Oboirien, B. (2017). Origins, roles and fate of organic acids in soils: A review. South African Journal of Botany, 108, 393–406.10.1016/j.sajb.2016.09.002
  • Adesemoye, A., Torbert, H., & Kloepper, J. (2008). Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Canadian Journal of Microbiology, 54(10), 876–886.10.1139/W08-081
  • Aggani, S. L. (2013). Development of biofertilisers and its future perspective. Scholars Academic Journal of Pharmacy, 2(4), 327–332.
  • Ahemad, M., & Khan, M. (2010). Influence of selective herbicides on plant growth-promoting traits of phosphate solubilising Enterobacter asburiae strain PS2. Research Journal of Microbiology, 5(9), 849–857.
  • Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University-Science, 26(1), 1–20.10.1016/j.jksus.2013.05.001
  • Ahlers, T., Kohli, H. S., & Sood, A. (2013). Africa 2050: Realizing the continent’s full potential. Global Journal of Emerging Market Economies, 5(3), 153–213.10.1177/0974910113505790
  • Ahmad, F., Ahmad, I., & Khan, M. S. (2005). Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turkish Journal of Biology, 29(1), 29–34.
  • Ahmed, H. F., & El-Araby, M. M. (2012). Evaluation of the influence of nitrogen-fixing, phosphate solubilising and potash mobilising biofertilisers on growth, yield, and fatty acid constituents of oil in peanut and sunflower. African Journal of Biotechnology, 11(43), 10079–10088.
  • Ahsan, M. L., Ali, A., & Ahmed, I. (2012). Biofertiliser a highly potent alternative to chemical fertilisers: Uses and future prospects. Journal of Chemical Engineering and Biological Science, 6(4), 10–23.
  • Akgül, D., & Mirik, M. (2008). Biocontrol of Phytophthora capsici on pepper plants by Bacillus megaterium strains. Journal of Plant Pathology, 90(1), 29–34.
  • Altomare, C., Norvell, W., Björkman, T., & Harman, G. (1999). Solubilisation of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Applied and Environmental Microbiology, 65(7), 2926–2933.
  • Antoun, H., Beauchamp, C. J., Goussard, N., Chabot, R., & Lalande, R. (1998). Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.). Plant and Soil, 204(1), 57–67.10.1023/A:1004326910584
  • Aroca, R., & Ruiz-Lozano, J. M. (2009). Induction of plant tolerance to semi-arid environments by beneficial soil microorganisms– A review. In E. Lichtfouse (Eds.), Climate change, intercropping, pest control and beneficial microorganisms. Sustainable agricultural reviews (Vol. 2, pp. 121–135). Dordrecht, Springer10.1007/978-90-481-2716-0
  • Arora, N. K., Khare, E., & Maheshwari, D. K. (2010). Plant growth promoting rhizobacteria: Constraints in bioformulation, commercialization, and future strategies. In D. Maheshwari (Ed.), Microbiology Monographs (Vol. 18, pp. 97–116). Berlin Heidelberg: Springer.
  • Arora, N. K., Khare, E., Oh, J. H., Kang, S. C., & Maheshwari, D. K. (2008). Diverse mechanisms adopted by fluorescent Pseudomonas PGC2 during the inhibition of Rhizoctonia solani and Phytophthora capsici. World Journal of Microbiology and Biotechnology, 24(4), 581–585.10.1007/s11274-007-9505-5
  • Asenso-Okyere, K., & Jemaneh, S. (2012). Increasing agricultural Productivity and enhancing food security in Africa: New challenges and opportunities. Washington, DC: International Food Policy Research Institute.
  • Atagana, H. (2004). Bioremediation of creosote-contaminated soil in South Africa by landfarming. Journal of Applied Microbiology, 96(3), 510–520.10.1111/jam.2004.96.issue-3
  • Bahadur, I., Meena, V. S., & Kumar, S. (2014). Importance and application of potassic biofertiliser in Indian agriculture. International Research Journal of Biological Sciences, 3(12), 80–85.
  • Bambara, S., & Ndakidemi, P. A. (2010). Changes in selected soil chemical properties in the rhizosphere of Phaseolus vulgaris L. supplied with Rhizobium inoculants, molybdenum and lime. Scientific Research and Essays, 5(7), 679–684.
  • Banayo, N. P. M., Cruz, P. C., Aguilar, E. A., Badayos, R. B., & Haefele, S. M. (2012). Evaluation of biofertilisers in irrigated rice: Effects on grain yield at different fertiliser rates. Agriculture, 2(4), 73–86.10.3390/agriculture2010073
  • Bationo, A., Hartemink, A., Lungu, O., Naimi, M., Okoth, P., Smaling, E., & Thiombiano, L. (2012). African soils: Their productivity and profitability of fertiliser use. In J. Kihara, D. Fatondji, J. W. Jones, G. Hoogenboom, R. Tabo, & Bationo A. (Eds.), Improving soil fertility recommendation in africa using decision support system for agrotechnology transfer (pp. 19–42). New York: Springer.10.1007/978-94-007-2960-5
  • Beijerinck, M. (1888). The root-nodule bacteria. Botanische Zeitung, 46, 725–804.
  • Bekunda, M., Nkonya, E., Mugendi, D., & Msaky, J. (2002). Soil fertility status, management, and research in East Africa. East African Journal of Rural Development, 20, 94–112.
  • Bello-Akinosho, M., Adeleke, R., Swanevelder, D., & Thantsha, M. (2015). Draft genome sequence of Pseudomonas sp. strain 10-1B, a polycyclic aromatic hydrocarbon degrader in contaminated soil. Genome Announcements, 3(3), e00325-15.
  • Bello-Akinosho, M., Makofane, R., Adeleke, R., Thantsha, M., Pillay, M., & Chirima, G. J. (2016). Potential of polycyclic aromatic hydrocarbon-degrading bacterial isolates to contribute to soil fertility. BioMed Research International, 2016(2016), 1–10.
  • Beneduzi, A., Ambrosini, A., & Passaglia, L. M. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35(4 suppl 1), 1044–1051.10.1590/S1415-47572012000600020
  • Benkeblia, N., & Francis, C.A. (2014). Agroecology applications in tropical agriculture systems. In N. Benkeblia (Eds.), Agroecology, Ecosystems, and Sustainability (pp. 201–220). Boca Raton, FL, FL CRC Press, Taylor & Francis Group.
  • Bernhard, A. (2010). The nitrogen cycle: Processes, players, and human impact. Nature Education Knowledge, 2(2), 12.
  • Berraho, E., Lesueur, D., Diem, H., & Sasson, A. (1997). Iron requirement and siderophore production in Rhizobium ciceri during growth on an iron-deficient medium. World Journal of Microbiology and Biotechnology, 13(5), 501–510.10.1023/A:1018553022960
  • Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilisers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13(1), 1.
  • Bhattacharjee, R., & Dey, U. (2014). Biofertiliser, a way towards organic agriculture: A review. African Journal of Microbiology Research, 8(24), 2332–2343.
  • Bhattacharyya, P. (2014). Biofertiliser use in organic farming: A practical and challenging approach. In P. k. Shetty, C. Alvares, & A.K. Yadav (Eds.), Organic Farming and Sustainability (p. 157). Bangalore: National Institute of Advanced Studies.
  • Bhattacharyya, P., & Jha, D. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(4), 1327–1350.10.1007/s11274-011-0979-9
  • Boraste, A., Vamsi, K., Jhadav, A., Khairnar, Y., Gupta, N., Trivedi, S., & Mujapara, A. (2009). Biofertilisers: A novel tool for agriculture. International Journal of Microbiology Research, 1(2), 23–31.
  • Boyer, E. W., Howarth, R. W., Galloway, J. N., Dentener, F. J., Cleveland, C., Asner, G. P., & Vörösmarty, C. (2004). Current nitrogen inputs to world regions. In A. R. Mosier, J. K. Syers, & J. R. Freney (Eds.), Agriculture and the nitrogen cycle: Assessing the impacts of fertiliser use on food production and the environment (pp. 221–230). Washington, DC: Island Press.
  • Bühmann, C., Beukes, D., & Turner, D. (2006). Plant nutrient status of soils of the Lusikisiki area, Eastern Cape Province. South African Journal of Plant and Soil, 23(2), 93–98.10.1080/02571862.2006.10634737
  • Carvajal-Muñoz, J., & Carmona-Garcia, C. (2012). Benefits and limitations of biofertilization in agricultural practices. Livestock Research for Rural Development, 24(3), 1–8.
  • Cervantes-Godoy, D., & Dewbre, J. (2010). Economic importance of agriculture for poverty reduction. OECD Food Agriculture and Fisheries (p. 23). Paris: OECD Publishing.
  • Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J., & Grant, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1573), 1987–1998.10.1098/rstb.2010.0390
  • Chianu, J. N., Nkonya, E. M., Mairura, F., Chianu, J. N., & Akinnifesi, F. (2010). Biological nitrogen fixation and socioeconomic factors for legume production in sub-Saharan Africa: A review. Agronomy for Sustainable Development, 31(1), 139–154.
  • Cho, R. (2013). Phosphorus: Essential to life-are we running out? -State of the planet. Earth Institute, Columbia University. Retrieved from http://blogs.ei.columbia.edu/2013/04/01/phosphorus-essential-to-life-are-we-running-out/
  • Collier, P., & Dercon, S. (2014). African agriculture in 50 years: Smallholders in a rapidly changing world? World Development, 63, 92–101.10.1016/j.worlddev.2013.10.001
  • Deckers, J. (1993). Soil fertility and environmental problems in different ecological zones of the developing countries in Sub-Saharan Africa. In H. van Reuler & W. H. Prins (Eds.), The role of plant nutrients for sustainable food production in sub-Saharan Africa (pp. 37–52). Wageningen: Posen & Looijen. Retrieved from http://library.wur.nl/WebQuery/file/isric/fulltext/isricu_i14047_001.pdf#page=44
  • Denning, G., Kabambe, P., Sanchez, P., Malik, A., Flor, R., Harawa, R., & Magombo, C. (2009). Input subsidies to improve smallholder maize productivity in Malawi: Toward an African Green Revolution. PLoS Biology, 7(1), e1000023.
  • de Valença, A. W., & Bake, A. (2016). Micronutrient management for improving harvests, human nutrition, and the environment. Scientific Project, Assigned by Food & Business Knowledge Platform. Wageningen: Wageningen University.
  • Diao, X., Thurlow, J., Benin, S., & Fan, S. (2012). Strategies and priorities for African agriculture: Economywide perspectives from country studies. Washinton DC: International Food Policy Research Institute (IFPRI). doi:10.2499/9780896291959
  • Dighe, N. S., Shukla, D., Kalkotwar, R. S., Laware, R. B., Bhawar, S. B., & Gaikwad, R. W. (2010). Nitrogenase enzyme: A review. Der Pharmacia Sinica, 1(2), 77–84.
  • Dimkpa, C., Weinand, T., & Asch, F. (2009). Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell & Environment, 32(12), 1682–1694.10.1111/j.1365-3040.2009.02028.x
  • Diniz, M.A., Teixeira, G., & Carrapico, F. (2015). Azolla as a biofertiliser in Africa. A challenge for the future. Revista de Ciências Agrárias23(3): 120–138.
  • Dioula, B. M., Deret, H., Morel, J., Vachat, E., & Kiaya, V. (2013). enhancing the role of smallholder farmers in achieving sustainable food and nutrition security. Paper presented at the ICN2, Second International Conference on Nutrition, Rome: Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/3/a-as563.pdf
  • Druilhe, Z., & Barreiro-Hurlé, J. (2012). Fertiliser subsidies in sub-Saharan Africa. ESA (Working Paper No. 12). Rome, FAO of the United Nations. Retrieved from http://www.fao.org/3/a-ap077e.pdf
  • Egamberdiyeva, D. (2007). The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Applied Soil Ecology, 36(2-3), 184–189.10.1016/j.apsoil.2007.02.005
  • El-Kabbany, S. (1998, December). Evaluation of four biofertiliser for bioremediation of pesticide-contaminated soil. Paper presented at the International Conference on Hazardous Waste: Sources, Effects and Management. Cairo. Retrieved from http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/31/026/31026700.pdf
  • Esitken, A., Yildiz, H. E., Ercisli, S., Figen Donmez, M. F., Turan, M., & Gunes, A. (2010). Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Scientia Horticulturae, 124(1), 62–66.10.1016/j.scienta.2009.12.012
  • Eswaran, H., Almaraz, R., van den Berg, E., & Reich, P. (1997). An assessment of the soil resources of Africa in relation to productivity. Geoderma, 77(1), 1–18.10.1016/S0016-7061(97)00007-4
  • Evert-Jan, Q., & Aniek, H. (2014). Final Report on Dutch Food Security Policy Consultation. Food and Business knowledge Platform. doi:10.13140/RG.2.2.28107.59680
  • Falkenmark, M., & Rockström, J. (2008). Building resilience to drought in desertification-prone savannas in Sub-Saharan Africa: The water perspective. Natural Resources Forum, 32(2), 93–102.10.1111/j.1477-8947.2008.00177.x
  • FAO. (2015). FAOSTAT3. 21.09.2016. Food and Agricultural Organisation of the United Nations. Retrieved from http://www.fao.org/faostat/en/#data/
  • Figueiredo, M. V. B., Seldin, L., de Araujo, F. F., & Mariano, R. L. R. (2011). Plant growth promoting rhizobacteria: Fundamentals and applications. In D. Maheshwari (Ed.), Plant growth and health promoting bacteria (pp. 21–43). Berlin, Heidelberg: Springer.10.1007/978-3-642-13612-2
  • Francis, J. A., & van Huis, A. (2016). Why focus on innovation systems: Implications for research and policy. In J. Francis, L. Mytalka, A. van Huis, & N. Röling, Innovation Systems: Towards effective strategies in support of smallholder farmers (pp. 8–23). Wageningen: CTA. Retrieved from https://publications.cta.int/en/publications/publication/1829/
  • Galloway, J. N. (1998). The global nitrogen cycle: Changes and consequences. Environmental Pollution, 102(1), 15–24.10.1016/S0269-7491(98)80010-9
  • García-Fraile, P., Menéndez, E., & Rivas, R. (2015). Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioengineering, 2(3), 183–205.10.3934/bioeng.2015.3.183
  • Garg, N., & Chandel, S. (2011). Effect of mycorrhizal inoculation on growth, nitrogen fixation, and nutrient uptake in Cicer arietinum (Woomer, Ongoma, & Wafullah) under salt stress. Turkish Journal of Agriculture and Forestry, 35(2), 205–214.
  • Ghosh, P. K., Kumar De, T., & Maiti, T. K. (2015). Production and Metabolism of Indole Acetic Acid in Root Nodules and Symbiont (Rhizobium undicola) Isolated from Root Nodule of Aquatic Medicinal Legume Neptunia oleracea Lour. Journal of Botany2015, 1–11.
  • Giller, K. E., Murwira, M. S., Dhliwayo, D. K., Mafongoya, P. L., & Mpepereki, S. (2011). Soyabeans and sustainable agriculture in southern Africa. International Journal of Agricultural Sustainability, 9(1), 50–58.10.3763/ijas.2010.0548
  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., … Toulmin, C. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812–818.10.1126/science.1185383
  • Grady, E. N., MacDonald, J., Liu, L., Richman, A., & Yuan, Z.-C. (2016). Current knowledge and perspectives of Paenibacillus: A review. Microbial Cell Factories, 15(1), 203.10.1186/s12934-016-0603-7
  • Guimarães, S. L., Neves, L. C. R. D., Bonfim-Silva, E. D. N. A., & Campos, D. T. D. S. (2016). Development of pigeon pea inoculated with rhizobium isolated from cowpea trap host plants. Revista Caatinga, 29(4), 789–795.10.1590/1983-21252016v29n402rc
  • Guo, L., Rasool, A., & Li, C. (2013). Antifungal substances of bacterial origin and plant disease management. In D. Maheshwari (Ed.), Bacteria in Agrobiology: Disease Management (pp. 473–485). Berlin, Heidelberg: Springer.10.1007/978-3-642-33639-3
  • Gupta, G., Panwar, J., Akhtar, M. S., & Jha, P. N. (2012). Endophytic nitrogen-fixing bacteria as biofertiliser. In E. Lichtfouse (Ed.), Sustainable Agriculture Reviews (pp. 183–221). Dordrecht: Springer.10.1007/978-94-007-5449-2
  • Gupta, R. P., Kalia, A., & Kapoor, S. (2007). Bioinoculants: A step towards sustainable agriculture. New Delhi: New India Publishing.
  • Gururani, M. A., Upadhyaya, C. P., Baskar, V., Venkatesh, J., Nookaraju, A., & Park, S. W. (2013). Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum Through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. Journal of Plant Growth Regulation, 32(2), 245–258.10.1007/s00344-012-9292-6
  • Han, H., & Lee, K. (2005). Phosphate and potassium solubilising bacteria effect on mineral uptake, soil availability and growth of eggplant. Research Journal of Agriculture and Biological Sciences, 1(2), 176–180.
  • Harris, F. (2002). Management of manure in farming systems in semi-arid West Africa. Experimental Agriculture, 38(02), 131–148.
  • Hassen, A. I., Bopape, F. L., & Sanger, L. K. (2016). Microbial inoculants as agents of growth promotion and abiotic stress tolerance in plants. In D. Singh, H. Singh, & R. Prabha (Eds.), Microbial inoculants in sustainable agricultural productivity (pp. 23–36). New Delhi: Springer.10.1007/978-81-322-2647-5
  • Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: A review. Annals of Microbiology, 60(4), 579–598.10.1007/s13213-010-0117-1
  • Heinonen-Tanski, H., Mohaibes, M., Karinen, P., & Koivunen, J. (2006). Methods to reduce pathogen microorganisms in manure. Livestock Science, 102(3), 248–255.10.1016/j.livsci.2006.03.024
  • Hellriegal, H., & Wilfarth, H. (1886). Unter suchungenurnber die stickst off - Nahrung der Graminum and leguminoseu. Beilagcheft. Z. vers. Rubensur lerine, 1–234 (Cited from Biological fixation of atmospheric nitrogen by Mishustin, E.N. and Shilnikova, London, UK, Macmillan Press Limited)
  • Henao, J., & Baanante, C. A. (1999). Estimating rates of nutrient depletion in soils of agricultural lands of Africa, International Fertiliser Development Center (IFDC). Technical Bulletin. Retrieved from http://pdf.usaid.gov/pdf_docs/pnacf868.pdf
  • Henao, J., & Baanante, C. (2006). Agricultural production and soil nutrient mining in Africa: Implications for resource conservation and policy development: International Center for Soil Fertility and Agricultural Development. Muscle Shoals, AL: IFDC. Retrieved from https://ifdcorg.files.wordpress.com/2015/01/t-72-agricultural_production_and_soil_nutrient.pdf
  • Herrmann, L., Atieno, M., Brau, L., & Lesueur, D. (2015). Microbial quality of commercial inoculants to increase BNF and nutrient use efficiency. In F. J. de Bruijn (Ed.), Biological Nitrogen Fixation (pp. 1031–1040). Hoboken, NJ: Wiley.10.1002/9781119053095
  • Hristov, A., Oh, J., Lee, C., Meinen, R., Montes, F., Ott, T., … Adesogan, A. (2013). Mitigation of greenhouse gas emissions in livestock production: A review of technical options for non-CO2 emissions. FAO Animal Production and Health Paper No, 177, 1–206.
  • Hu, T.-W., & Lee, A. H. (2015). Commentary: Tobacco control and tobacco farming in African countries. Journal of Public Health Policy, 36(1), 41–51.10.1057/jphp.2014.47
  • Insam, H., & Seewald, M. S. (2010). Volatile organic compounds (VOCs) in soils. Biology and Fertility of Soils, 46(3), 199–213.10.1007/s00374-010-0442-3
  • International Fund for Agricultural Development. (2013). Smallholders, food security and the environment. Rome: International Fund for Agricultural Development, United Nation Environmental Program UNEP. Retrieved from http://www.polity.org.za/attachment.php?aa_id=44788.
  • Jacobs, P., & Baiphethi, M. (2015). The contribution of subsistence farming to food security in South Africa. Agricultural Economic Research, Policy and Practice in South Africa, 48(4), 459–482.
  • Jain, P., & Khichi, D. S. (2014). Phosphate solubilising microorganism (PSM): An eco-friendly biofertiliser and pollution manager. Journal of Dynamics in Agricultural Research, 1(4), 23–28.
  • Karadeniz, A., Topcuoğlu, Ş., & İnan, S. (2006). Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World Journal of Microbiology and Biotechnology, 22(10), 1061–1064.10.1007/s11274-005-4561-1
  • Kariuki, J. G. (2011). The future of agriculture in Africa (The Pardee papers/No. 15). Massachusetts, Boston: Boston University: The Fredrick S. Pardee Center for the Study Longer-Range. Retrieved from http://www.bu.edu/pardee/files/2011/11/15-PP.pdf?PDF=pardee-papers-15-africa
  • Karuku, J. (2014, June 20). Smallholder farming the surest route to Africa growth. Mail & Guardian. Retrieved from https://mg.co.za/article/2014-06-19-smallholder-farming-the-surest-route-to-african-growth
  • Kaushal, M., & Wani, S. P. (2016). Plant-growth-promoting rhizobacteria: Drought stress alleviators to ameliorate crop production in drylands. Annals of Microbiology, 66(1), 35–42.10.1007/s13213-015-1112-3
  • Keino, L., Baijukya, F., Ng’etich, W., Otinga, A. N., Okalebo, J. R., Njoroge, R., & Mukalama, J. (2015). Nutrients Limiting Soybean (glycine max l) growth in acrisols and ferralsols of Western Kenya. PLoS ONE, 10(12), 1–20.
  • Khalil, S., & El-Noemani, A. (2015). Effect of biofertilisers on growth, yield, water relations, photosynthetic pigments and carbohydrates contents of Origanum vulgare L. plants grown under water stress conditions. American-Eurasian Journal of Sustainable Agriculture, 9(4), 60–73.
  • Khan, M. A. (2014). Microbiological Solution to Environmental Problems - A Review on Bioremediation. International Journal of Pure Applied. BioScience, 2(6), 295–303.
  • Kishimba, M., Henry, L., Mwevura, H., Mmochi, A., Mihale, M., & Hellar, H. (2004). The status of pesticide pollution in Tanzania. Talanta, 64(1), 48–53.10.1016/j.talanta.2003.11.047
  • Kolavalli, S., & Vigneri, M. (2011). Cocoa in Ghana: Shaping the success of an economy. Yes, Africa can: Success stories from a dynamic continent, 201–218.
  • Koskei, R. C., Langat, J. K., Koskei, E. C., & Oyugi, M. A. (2013). Determinants of agricultural information access by smallholder tea farmers in Bureti District. Kenya. Asian Journal of Agricultural Sciences, 5(5), 102–107. Retrieved from http://maxwellsci.com/print/ajas/v5-102-107.pdf
  • Kumar, A., Biswas, T., Singh, N., & Lal, E. (2014). Effect of gibberellic acid on growth, quality and yield of tomato (Lycopersicon esculentum). Journal of Agriculture and Veterinary Science, 7(4), 28–30.
  • Kumar, H., Bajpai, V. K., Dubey, R., Maheshwari, D., & Kang, S. C. (2010). Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertiliser. Crop Protection, 29(6), 591–598.10.1016/j.cropro.2010.01.002
  • Leigh, J., Hodge, A., & Fitter, A. H. (2009). Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytologist, 181(1), 199–207.10.1111/nph.2009.181.issue-1
  • Lesueur, D., Deaker, R., Herrmann, L., Bräu, L., & Jansa, J. (2016). The production and potential of biofertilisers to improve crop yields. Bioformulations: For Sustainable Agriculture, 71–92.
  • Lichtfouse, E., Navarrete, M., Debaeke, P., Souchère, V., Alberola, C., & Ménassieu, J. (2009). Agronomy for sustainable agriculture: A review. Agronomy for Sustainable Development, 29, 1–6.10.1051/agro:2008054
  • Liu, E., Yan, C., Mei, X., He, W., Bing, S. H., Ding, L., … Fan, T. (2010). Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma, 158(3–4), 173–180.10.1016/j.geoderma.2010.04.029
  • Liverpool-Tasie, L. S. O., Omonona, B. T., Sanou, A., & Ogunleye, W. (2015). Is increasing inorganic fertiliser use in Sub-Saharan Africa a profitable proposition? Evidence from Nigeria. Evidence from Nigeria (February 1, 2015). World Bank Policy Research Working Paper (7201)
  • Lu, G., Coneva, V., Casaretto, J. A., Ying, S., Mahmood, K., Liu, F., … Rothstein, S. J. (2015). OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution. The Plant Journal, 83(5), 913–925.10.1111/tpj.2015.83.issue-5
  • Lucy, M., Reed, E., & Glick, B. R. (2004). Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek, 86(1), 1–25.10.1023/B:ANTO.0000024903.10757.6e
  • Mahdi, S. S., Hassan, G., Samoon, S., Rather, H., Dar, S. A., & Zehra, B. (2010). Biofertilisers in organic agriculture. Journal of Phytology, 2(10), 42–54.
  • Malusà, E., & Ciesielska, J. (2014). Biofertilisers: A resource for sustainable plant nutrition. Fertiliser Technology, 1(1), 282–319.
  • Malusà, E., Pinzari, F., & Canfora, L. (2016). Efficacy of biofertilisers: Challenges to improve crop production. In D. Singh, H. Singh, & R. Prabha (Eds.), Microbial inoculants in sustainable agricultural productivity (pp. 17–40). Springer: New Delhi.10.1007/978-81-322-2644-4
  • Malusá, E., Sas-Paszt, L., & Ciesielska, J. (2012). Technologies for beneficial microorganisms inocula used as biofertilisers. The Scientific World Journal, 2012(2012), 1–12.
  • Martínez-Romero, E. (2009). Coevolution in rhizobium -legume symbiosis? DNA and Cell Biology, 28(8), 361–370.10.1089/dna.2009.0863
  • Martino, E., Perotto, S., Parsons, R., & Gadd, G. M. (2003). Solubilisation of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biology and Biochemistry, 35(1), 133–141.10.1016/S0038-0717(02)00247-X
  • Mathew, A., Eberl, L., & Carlier, A. L. (2014). A novel siderophore-independent strategy of iron uptake in the genus B urkholderia. Molecular Microbiology, 91(4), 805–820.10.1111/mmi.2014.91.issue-4
  • Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Science, 166(2), 525–530.10.1016/j.plantsci.2003.10.025
  • Mazid, M., Khan, T., & Mohammad, F. (2011). Role of secondary metabolites in defense mechanisms of plants. Biology and Medicine, 3(2), 232–249.
  • Megali, L., Schlau, B., & Rasmann, S. (2015). Soil microbial inoculation increases corn yield and insect attack. Agronomy for Sustainable Development, 35(4), 1511–1519.10.1007/s13593-015-0323-0
  • Minde, I., Jayne, T. S., Crawford, E., Ariga, J., & Govereh, J. (2008). Promoting fertiliser use in Africa: Current issues and empirical evidence from Malawi, Zambia, and Kenya. Food Security International Development Policy Syntheses, 54509. Retrieved from http://pdf.usaid.gov/pdf_docs/PNADS615.pdf
  • Mohammadi, K. (2012). Phosphorus solubilising bacteria: Occurrence, mechanisms and their role in crop production. Resources and Environment, 2(1), 80–85.
  • Mohammadi, K., & Sohrabi, Y. (2012). Bacterial biofertilisers for sustainable crop production: A review. Journal of Agricultural and Biological Science, 7(5), 307–316.
  • Moreno-Caselles, J., Moral, R., Perez-Murcia, M., Perez-Espinosa, A., & Rufete, B. (2002). Nutrient value of animal manures in front of environmental hazards. Communications in Soil Science and Plant Analysis, 33(15–18), 3023–3032.10.1081/CSS-120014499
  • Morris, M. L., Kelly, V. A., Kopicki, R. J., & Byerlee, D. (2007). Fertiliser use in African agriculture: Lessons learned and good practice guidelines. Washington, DC: The World Bank.10.1596/978-0-8213-6880-0
  • Mugabe, J. (1994). Research on biofertilisers: Kenya, Zimbabwe and Tanzania. Biotechnology and Development Monitor, 18, 9–10.
  • Mujawar, M. I. (2014). Bacteria and fungi can contribute to nutrients. Journal of King Saud University, 26(1), 1–20.
  • Mukhongo, R., Tumuhairwe, J., Ebanyat, P., AbdelgGadi, A., Thuita, M., & Masso, C. (2016). Production and use of arbuscular mycorrhizal fungi inoculum in sub-Saharan Africa: Challenges and ways of improving. International Journal of Soil Science, 11(3), 108–122.10.3923/ijss.2016.108.122
  • Mulongoy, K., Gianinazzi, S., Roger, P.-A., & Dommergues, Y. (1992). Biofertilisers: Agronomic and environmental impacts and economics. In E. J. DaSilva, C. Ratledge, & A. Sasson (Eds.), Biotechnology: Economic and social aspects: issues for developing countries (pp. 55–69). Cambridge: Cambridge University Press.10.1017/CBO9780511760075
  • Muzari, W., Gatsi, W., & Muvhunzi, S. (2012). The impacts of technology adoption on smallholder agricultural productivity in sub-Saharan Africa: A review. Journal of Sustainable Development, 5(8), 69.
  • Mwangi, W. M. (1996). Low use of fertilizers and low productivity in sub-Saharan Africa. Nutrient Cycling in Agroecosystems, 47(2), 135–147.10.1007/BF01991545
  • N2Africa. (2015). N2Africa revitalizes legume production in Nigeria. IITA, Research to Nourish Africa. Retrieved from http://www.iita.org/news-item/n2africa-revitalizes-legume-production-nigeria/
  • Nagayet, O. (2005). Small farms: Current status and key trends. In IFPRI (International Food Policy Research Institute): The future of small farms: Proceedings of a research workshop, UK, June 26-29 (pp. 355–367). Washington, DC: Wye. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.1658&rep=rep1&type=pdf
  • Nga, N. T., Tien, D. T., Linh, V. T., Nhung, N. T., Tam, N. T., Neergaard, E. D., & Jørgensen, H. (2013). Control of plant diseases by the endophytic rhizobacterial strain Pseudomonas aeruginosa 23 1-1. In M. S. Reddy, O. I. Ilao, P. S. Faylon, W. D. Dar, W. D. Batchelor, R. Sayyed, H. K. Sudini, V. K. Kumar, A. B. Armanda, & S. Gopalkrishnan (Eds.), Recent advances in biofertilisers and biofungicides (PGPR) for sustainable agriculture (pp. 8–18). Newcastle: Cambridge Scholar.
  • Ngetich, F. K., Shisanya, C. A., Mugwe, J., Mucheru-Muna, M., Mugendi, D. N. (2012). The potential of organic and inorganic nutrient sources in sub-Saharan African crop farming systems. In J.K. Whalen, (Ed.), Soil fertility improvement and integrated nutrient management–A global perspective (pp. 135–156). Rijeka: INTECH.
  • Nkonya, E., Pender, J., Kaizzi, K. C., Kato, E., Mugarura, S., Ssali, H., & Muwonge, J. (2008). Linkages between land management, land degradation, and poverty in sub-Saharan Africa: The case of Uganda (Report No159). Washington, DC: International Food Policy Research Institute.
  • Okorogbona, A. O. M., & Adebisi, L. O. (2012). Animal manure for smallholder agriculture in South Africa. In E. Lichtfouse (Ed.), Farming for food and water security, sustainable agricultural reviews (pp. 201–242). Dordrecht: Springer.10.1007/978-94-007-4500-1
  • Oldroyd, G. E., Murray, J. D., Poole, P. S., & Downie, J. A. (2011). The rules of engagement in the legume-rhizobial symbiosis. Annual Review of Genetics, 45, 119–144.10.1146/annurev-genet-110410-132549
  • Pacanoski, Z. (2009). The myth of organic agriculture. Plant Protection Science, 45(2), 39–48. Retrieved from http://www.agriculturejournals.cz/publicFiles/08127.pdf
  • Pal, S., Singh, H., Farooqui, A., & Rakshit, A. (2015). Fungal biofertilisers in Indian agriculture: Perception, demand and promotion. Journal of Eco-friendly Agriculture, 10(2), 101–113.
  • Pang, X., & Letey, J. (2000). Organic farming challenge of timing nitrogen availability to crop nitrogen requirements. Soil Science Society of America Journal, 64(1), 247–253.10.2136/sssaj2000.641247x
  • Parani, K., & Saha, B. (2012). Prospects of using phosphate solubilising Pseudomonas as biofertiliser. European Journal of Biological Science, 4(2), 40–44.
  • Parmar, P., & Sindhu, S. (2013). Potassium solubilisation by rhizosphere bacteria: Influence of nutritional and environmental conditions. Journal of Microbiology Research, 3(1), 25–31.
  • Paudel, Y., Pradhan, S., Pant, B., & Prasad, B. (2012). Role of blue-green algae in rice productivity. Agriculture and Biology Journal of North America, 3(8), 332–335.10.5251/abjna.2012.3.8.332.335
  • Pérez-Montaño, F., Alías-Villegas, C., Bellogín, R., del Cerro, P., Espuny, M., Jiménez-Guerrero, I., … Cubo, T. (2014). Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiological Research, 169(5–6), 325–336.10.1016/j.micres.2013.09.011
  • Pindi, P. K., & Satyanarayana, S. D. V. (2012). Liquid microbial consortium-a potential tool for sustainable soil health. Journal of Biofertilisers & Biopesticides, 3(4), 124.
  • Poulton, C., Dorward, A., & Kydd, J. (2010). The future of small farms: New directions for services, institutions, and intermediation. World Development, 38(10), 1413–1428.10.1016/j.worlddev.2009.06.009
  • Radzki, W., Gutierrez Mañero, F. G., Algar, E., Lucas García, J. L., García-Villaraco, A., & Ramos Solano, B. R. (2013). Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie van Leeuwenhoek, 104(3), 321–330.10.1007/s10482-013-9954-9
  • Rai, M. K. (Ed.). (2006). Handbook of microbial biofertilisers. Binghamton, NY: Haworth Press.
  • Ramasamy, K., Joe, M. M., Kim, K.-Y., Lee, S.-M., Shagol, C., Rangasamy, A., … Sa, T.-M. (2011). Synergistic effects of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria for sustainable agricultural production. Korean Journal of Soil Science and Fertilizer, 44(4), 637–649.10.7745/KJSSF.2011.44.4.637
  • Rashid, M. I., Mujawar, L. H., Shahzad, T., Almeelbi, T., Ismail, I. M., & Oves, M. (2016). Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiological Research, 183, 26–41.10.1016/j.micres.2015.11.007
  • Rattso, J., & Torvik, R. (2003). Interactions between agriculture and industry: Theoretical analysis of the consequences of discriminating agriculture in sub-Saharan Africa. Review of Development Economics, 7(1), 138–151.10.1111/rode.2003.7.issue-1
  • Reinhold-Hurek, B., Hurek, T., Gillis, M., Hoste, B., Vancanneyt, M., Kersters, K., & De Ley, J. (1993). Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. International Journal of Systematic and Evolutionary Microbiology, 43(3), 574–584.
  • Ribaudo, C. M., Krumpholz, E. M., Cassán, F. D., Bottini, R., Cantore, M. L., & Curá, J. A. (2006). Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene. Journal of Plant Growth Regulation, 25(2), 175–185.10.1007/s00344-005-0128-5
  • Richardson, A. E., Barea, J.-M., McNeill, A. M., & Prigent-Combaret, C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 321(1–2), 305–339.10.1007/s11104-009-9895-2
  • Richardson, A. E., & Simpson, R. J. (2011). Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiology, 156(3), 989–996.10.1104/pp.111.175448
  • Riggs, P. J., Chelius, M. K., Iniguez, A. L., Kaeppler, S. M., & Triplett, E. W. (2001). Enhanced maize productivity by inoculation with diazotrophic bacteria. Functional Plant Biology, 28(9), 829–836.10.1071/PP01045
  • Rodrigues, E. P., Rodrigues, L. S., de Oliveira, A. L. M., Baldani, V. L. D., Dos Santos Teixeira, K. R., Urquiaga, S., & Reis, V. M. (2008). Azospirillum amazonense inoculation: Effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant and Soil, 302(1–2), 249–261.10.1007/s11104-007-9476-1
  • Ronner, E., Franke, A., Vanlauwe, B., Dianda, M., Edeh, E., Ukem, B., … Giller, K. (2016). Understanding variability in soybean yield and response to P-fertilizer and rhizobium inoculants on farmers’ fields in northern Nigeria. Field Crops Research, 186, 133–145.10.1016/j.fcr.2015.10.023
  • Rose, M. T., Phuong, T. L., Nhan, D. K., Cong, P. T., Hien, N. T., & Kennedy, I. R. (2014). Up to 52 % N fertilizer replaced by biofertilizer in lowland rice via farmer participatory research. Agronomy for Sustainable Development, 34(4), 857–868.10.1007/s13593-014-0210-0
  • Rosegrant, M. W., Cline, S. A., Li, W., Sulser, T. B., & Valmonte-Santos, R. (2005). Looking ahead: Long-term prospects for Africa’s agricultural development and food security (Vol. 41). Washinton, DC: International Food Policy Research Institute. Retrieved from https://ideas.repec.org/p/fpr/2020dp/41.html
  • Rosemarin, A., De Bruijne, G., & Caldwell, I. (2009). Peak phosphorus: The next inconvenient truth. The Broker, 15, 6–9.
  • Rosen, C. J., & Bierman, P. M. (Eds.) (2005). Using manure and compost as nutrient sources for fruit and vegetable crops. (Commercial fruit and vegetable production). Minneapolis: University of Minnesota Extension. Retrieved from https://www.extension.umn.edu/garden/fruit-vegetable/using-manure-and-compost/
  • Rowell, B., & Hadad, R. (2004). Organic manures and fertilisers for vegetable crops. Lexington: The University of Kentucky, Department of Horticulture. Retrieved from http://www.uky.edu/hort/node/424.
  • Roy, R. N., Finck, A., Blair, G. J., & Tandon, H. L. S. (2006). Plant nutrition for food security. A guide for integrated nutrient management (p. 16). Rome: FAO, Fertiliser and Plant Nutrition Bulletin. Retrieved from http://www.fao.org/3/a-a0443e.pdf
  • Rudrappa, T., Czymmek, K. J., Pare, P. W., & Bais, H. P. (2008). Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiology, 148(3), 1547–1556.10.1104/pp.108.127613
  • Rukuni, M. (2002). Africa: Addressing growing threats to food security. The Journal of nutrition, 132(11), 3443–3448.
  • Sanchez, P. A. (2002). Ecology: soil fertility and hunger in Africa. Science, 295(5562), 2019–2020.10.1126/science.1065256
  • Sangeeth, K., Bhai, R. S., & Srinivasan, V. (2012). Paenibacillus glucanolyticus, a promising potassium solubilising bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. Journal of Spices and Aromatic. Crops, 21(2), 118–124.
  • Santoro, M. V., Zygadlo, J., Giordano, W., & Banchio, E. (2011). Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiology and Biochemistry, 49(10), 1177–1182.10.1016/j.plaphy.2011.07.016
  • Schröder, J., Cordell, D., Smit, A., & Rosemarin, A. (Eds.). (2010). Sustainable use of phosphorus (EU tender ENV. B1/ETU/2009/0025). Wageningen: Wageningen University and Research Centre: Plant Research International.
  • Shaharoona, B., Naveed, M., Arshad, M., & Zahir, Z. A. (2008). Fertiliser-dependent efficiency of Pseudomonas for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Applied Microbiology and Biotechnology, 79(1), 147–155.10.1007/s00253-008-1419-0
  • Shanware, A. S., Kalkar, S. A., & Trivedi, M. M. (2014). Potassium Solubilisers: Occurrence, mechanism and their role as competent biofertilisers. International Journal of Current Microbiological Applied Science, 3(9), 622–629.
  • Shridhar, B. S. (2012). Review: Nitrogen fixing microorganisms. International Journal of Microbiological Research, 3(1), 46–52.
  • Singh, J. S., Kumar, A., Rai, A. N., & Singh, D. P. (2016). Cyanobacteria: A precious bio-resource in agriculture, ecosystem, and environmental sustainability. Frontiers in Microbiology, 7, 529.
  • Singh, J. S., Pandey, V. C., & Singh, D. (2011). Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agriculture, Ecosystems & Environment, 140(3-4), 339–353.10.1016/j.agee.2011.01.017
  • Singh, S., Srivastava, K., Sharma, S., & Sharma, A. (2014). Mycorrhizal inoculum production. In Z. Solaiman, L. Abbott, & A. Varma (Eds.), Mycorrhizal Fungi: Use in sustainable agriculture and land restoration (pp. 67–79). Heidelberg, Berlin: Springer.
  • Solanki, M. K., Kumar, S., Pandey, A. K., Srivastava, S., Singh, R. K., Kashyap, P. L., … Arora, D. K. (2012). Diversity and antagonistic potential of Bacillus spp. associated to the rhizosphere of tomato for the management of Rhizoctonia solani. Biocontrol Science and Technology, 22(2), 203–217.10.1080/09583157.2011.649713
  • Solanki, M. K., Singh, R. K., Srivastava, S., Kumar, S., Kashyap, P. L., Srivastava, A. K., & Arora, D. K. (2014). Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani. Journal of Basic Microbiology, 54(6), 585–597.10.1002/jobm.v54.6
  • Soltani, A.-A., Khavazi, K., Asadi-Rahmani, H., Omidvari, M., Dahaji, P. A., & Mirhoseyni, H. (2010). Plant growth promoting characteristics in some Flavobacterium spp. isolated from soils of Iran. Journal of Agricultural Science, 2(4), 106–115.
  • Sommer, R., Bossio, D., Desta, L., Dimes, J., Kihara, J., Koala, S., … Winowiecki, L. (2013). Profitable and sustainable nutrient management systems for East and Southern African smallholder farming systems- challenges and opportunities: A synthesis of the Eastern and Southern Africa situation in terms of past experiences, present and future opportunities in promoting nutrients use in Africa. Cali Colombia: CIAT, The University of Queensland. QAAFI & CIMMYT. Retrieved from http://hdl.handle.net/10883/4035
  • Strange, R. N., & Scott, P. R. (2005). Plant disease: A threat to global food security. Annual. Review of Phytopathology, 43, 83–116.10.1146/annurev.phyto.43.113004.133839
  • Sundara, B., Natarajan, V., & Hari, K. (2002). Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Research, 77(1), 43–49.10.1016/S0378-4290(02)00048-5
  • Sutton, M. A., Bleeker, A., Howard, C., Bekunda, M., Grizzetti, B., De Vries, W., Davidson, E. A. (2013). Our nutrient world: The challenge to produce more food and energy with less pollution. Edinburgh: Centre for Ecology and Hydrology. Retrieved from http://nora.nerc.ac.uk/id/eprint/500700
  • Suyal, D. C., Soni, R., Sai, S., & Goel, R. (2016). Microbial inoculants as biofertiliser. In D. Singh & R. Prabha (Eds.), Microbial Inoculants in Sustainable Agricultural Productivity (pp. 311–318). New Delhi: Springer.10.1007/978-81-322-2647-5
  • Svotwa, E., Baipai, R., & Jiyane, J. (2009). Organic farming in the smallholder farming sector of Zimbabwe. Electronic Journal of Environmental Agricultural and Food Chemistry, 6(2), 1820–1827.
  • Swain, M. R., Naskar, S. K., & Ray, R. C. (2007). Indole-3-acetic acid production and effect on sprouting of yam (Dioscorea rotundata L.) minisetts by Bacillus subtilis isolated from culturable cowdung microflora. Polish Journal of Microbiology, 56(2), 103.
  • Taffesse, A.S., Dorosh, P., & Asrat, S. (2011). Crop production in Ethiopia: Regional patterns and trends (Ethiopia Strategy Support Program ESSP II Working Paper 16). Addis Ababa: International Food Policy Research Institute. Retrieved from http://reliefweb.int/sites/reliefweb.int/files/resources/essprn11.pdf
  • Tairo, E. V., & Ndakidemi, P. A. (2014). Micronutrients uptake in soybean (Glycine max L.) as affected by Bradyrhizobium japonicum inoculation and phosphorus (p) supplements. World Journal of Soil and Crop Sciences Research, 1(1), 1–9.
  • Tamil Nadu Agricultural University (2014). Biofertiliser: In organic farming- Organic inputs and techniques. Coimbatore: TNAU Agritech Portal. Retrieved from http://agritech.tnau.ac.in/org_farm/orgfarm_biofertilisertechnology.html.
  • Tawaraya, K., Naito, M., & Wagatsuma, T. (2006). Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi. Journal of Plant Nutrition, 29(4), 657–665.10.1080/01904160600564428
  • Thamer, S., Schädler, M., Bonte, D., & Ballhorn, D. J. (2011). Dual benefit from a belowground symbiosis: Nitrogen-fixing rhizobia promote growth and defense against a specialist herbivore in a cyanogenic plant. Plant and Soil, 341(1–2), 209–219.10.1007/s11104-010-0635-4
  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671–677.10.1038/nature01014
  • Tittonell, P., Shepherd, K. D., Vanlauwe, B., & Giller, K. E. (2008). Unravelling the effects of soil and crop management on maize productivity in smallholder agricultural systems of western Kenya – An application of classification and regression tree analysis. Agriculture, Ecosystems & Environment, 123(1–3), 137–150.10.1016/j.agee.2007.05.005
  • Trewavas, A. (2001). Urban myths of organic farming. Nature, 410(6827), 409–410.10.1038/35068639
  • Tschirley, D. L., & Benfica, R. (2001). Smallholder agriculture, wage labour and rural poverty alleviation in land-abundant areas of Africa: Evidence from Mozambique. The Journal of Modern African Studies, 39(2), 333–358.
  • Tubiello, F. N., Salvatore, M., Rossi, S., Ferrara, A., Fitton, N., & Smith, P. (2013). The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters, 8(1), 015009.10.1088/1748-9326/8/1/015009
  • Ugboh, O., & Ulebor, J. U. (2011). Application of integrated soil fertility approach in the improvement of soil fertility in semi-arid ecology. Journal of Agriculture and Social Research, 11(2), 81–86.
  • United Nations, Department of Economic and Social Affairs, Population Division, (2015). World population prospects: The 2015 revision, key findings and advance tables. (Working Paper No. ESA/P/WP.241).
  • Vacheron, J., Desbrosses, G., Bouffaud, M.-L., Touraine, B., Moënne-Loccoz, Y., Muller, D., … Prigent-Combaret, C. (2013). Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science, 4, 356.
  • Van Kauwenbergh, S. J., Stewart, M., & Mikkelsen, R. (2013). World reserves of phosphate rock… a dynamic and unfolding story. Better Crops, 97(3), 18–20.
  • Vanlauwe, B., Coyne, D., Gockowski, J., Hauser, S., Huising, J., Masso, C., … Van Asten, P. (2014). Sustainable intensification and the African smallholder farmer. Current Opinion in Environmental Sustainability., 8, 15–22.10.1016/j.cosust.2014.06.001
  • Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., & Nasrulhaq Boyce, A. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability – A review. Molecules, 21(5), 573.10.3390/molecules21050573
  • Verma, A., Kukreja, K., Pathak, D., Suneja, S., & Narula, N. (2001). In vitro production of plant growth regulators (PGRs) by Azotobacter chroococcum. Indian Journal of Microbiology, 41(4), 305–307.
  • Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilisers. Plant and Soil, 255(2), 571–586.10.1023/A:1026037216893
  • Villegas, M. D. C., Rome, S., Mauré, L., Domergue, O., Gardan, L., Bailly, X., … Brunel, B. (2006). Nitrogen-fixing sinorhizobia with Medicago laciniata constitute a novel biovar (bv. medicaginis) of S. Systematic and Applied Microbiology, 29(7), 526–538.10.1016/j.syapm.2005.12.008
  • Wagner, S. C. (2012). Biological nitrogen fixation. Nature Education Knowledge, 3(10), 15.
  • Wallace, M. B., & Knausenberger, W. I. (1997). Inorganic fertiliser use in Africa: Environmental and economic dimensions. Washington, DC: USAID. Retrieved from https://vtechworks.lib.vt.edu/handle/10919/68427
  • Weis, T. (2007). The global food economy: The battle for the future of farming: London: Fernwood. Retrieved from http://idsa012013.pbworks.com/w/file/fetch/70717114/Weis_GlobalFoodEconomy.PDF
  • Wiggins, S., & Keats, S. (2013). Leaping and Learning: Linking smallholders to markets in Africa. London: Agriculture for Impact, Imperial College and Overseas Development Institute (ODI). Retrieved from http://hdl.handle.net/10568/35246
  • Willoughby, R., & Forsythe, L. (2012). Farming for impact-A case study of smallholder agriculture in Rwanda (Technical Report). Concern worldwide. Retrieved from http://gala.gre.ac.uk/12560/
  • World Bank. (2013). World Fertiliser Consumption. The World Bank DataBank. Retrieved from http://data.worldbank.org/indicator/AG.CON.FERT.ZS?view=chart
  • The World Factbook. (2017). Washington, DC: Central Intelligence Agency. Retrieved from https://www.cia.gov/library/publications/the-world-factbook/index.html
  • Wu, Q.-S., & Xia, R.-X. (2006). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 163(4), 417–425.10.1016/j.jplph.2005.04.024
  • Yanggen, D., Kelly, V. A., Reardon, T., & Naseem, A. (1998). Incentives for fertiliser use in sub-Saharan Africa: A review of empirical evidence on fertiliser response and profitability. International Development (Working Paper No. 70). East Lansing: Michigan State University, Department of Agricultural Economics and Department of Economics. Retrieve from http://purl.umn.edu/54677
  • Yanni, Y. G., Rizk, R. Y., El-Fattah, F. K. A., Squartini, A., Corich, V., Giacomini, A., … Dazzo, F. B. (2001). The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Australian Journal of Plant Physiology, 28(9), 845–870.
  • Yasin, M., Munir, I., & Faisal, M. (2016). Can Bacillus spp. Enhance K+ uptake in crop species. In V. S. Meena, B. R. Maurya, J. P. Verma & R. S. Meena (Eds.), Potassium solubilising microorganisms for sustainable agriculture. India: Springer.
  • Zabbey, N., Sam, K., & Onyebuchi, A. T. (2017). Remediation of contaminated lands in the Niger Delta, Nigeria: Prospects and challenges. Science of the Total Environment, 586, 952–965.10.1016/j.scitotenv.2017.02.075
  • Zalewska, M., & Antkowiak, M. (2013). Gibberellic acid effect on growth and flowering of Ajania pacifica/Nakai/Bremer et Humphries. Journal of Horticultural Research, 21(1), 21–27.