1,963
Views
0
CrossRef citations to date
0
Altmetric
SOIL & CROP SCIENCES

Assessing the heat stress tolerance potential of tomato lines under poly-house and open field conditions

, , , , , , , , & show all
Article: 2115665 | Received 06 Jul 2022, Accepted 17 Aug 2022, Published online: 04 Sep 2022

References

  • Abdul-Baki, A. A. (1991). Tolerance of tomato cultivars and selected germplasm to heat stress. Journal of American Society for Horticultural Science, 116(6), 1113–17. https://doi.org/10.21273/JASHS.116.6.1113
  • Alsadon, A. A., Wahb-Allah, M. A., & Khalil, S. O. (2006). In vitro evaluation of heat stress tolerance in some tomato cultivars. Agricultural Science, 19(1), 13–24 http://www.biocas-fao.com/wp-content/uploads/2016/10/Heat-Stress-Evaluation.pdf.
  • Alsamir, M., Ahmad, N. M., Mahmood, T., & Trethowan, R. (2017). Morpho-physiological traits linked to high temperature stress tolerance in tomato (S. Lycopersicum L.). American Journal of Plant Sciences, 08(11), 2681–2694. https://doi.org/10.4236/ajps.2017.811180
  • Alsamir, M., Mahmood, T., Trethowan, R., & Ahmad, N. (2021). An overview of heat stress in tomato (Solanum Lycopersicum L.). Saudi Journal of Biological Sciences, 28(3), 1654–1663. https://doi.org/10.1016/j.sjbs.2020.11.088
  • Arena, C., Conti, S., Francesca, S., Melchionna, G., Hájek, J., Barták, M., Barone, A., & Manuela Rigano, M. (2020). Eco-physiological screening of different tomato genotypes in response to high temperatures: A combined field-to-laboratory approach. Plants, 9(4), 1–16 https://doi.org/10.3390/plants9040508.
  • Ayenan, M. A. T., Danquah, A., Hanson, P., Ampomah-Dwamena, C., Ariel Kpedetin Sodedji, F., Asante, I. K., & Yirenkyi Danquah, E. (2019). Accelerating breeding for heat tolerance in tomato (Solanum Lycopersicum L.): An integrated approach. Agronomy, 9(11), 720. https://doi.org/10.3390/agronomy9110720
  • Berry, J. A., & Bjorkman, O. (1980). Photosynthetic response and adaptation to temperature in higher plants In Higher Plants. Annual Review of Plant Physiology, 31(31), 491–543. https://doi.org/10.1146/annurev.pp.31.060180.002423
  • Berry, S. Z., & Uddin, M. R. (1988). Effect of high temperature on fruit-set in tomato cultivars and selected germplasm. HortScience, 23 3 , 606–608 .
  • Bhandari, K., Siddique, K. H. M., Turner, N. C., Kaur, J., Singh, S., Kumar Agrawal, S., & Nayyar, H. (2016). Heat stress at reproductive stage disrupts leaf carbohydrate metabolism, impairs reproductive function, and severely reduces seed yield in lentil. Journal of Crop Improvement, 30(2), 118–151 https://doi.org/10.1080/15427528.2015.1134744.
  • Blonder, B., & Michaletz, S. T. (2018). A model for leaf temperature decoupling from air temperature. Agricultural and Forest Meteorology, 262(November), 354–360. https://doi.org/10.1016/j.agrformet.2018.07.012
  • Bokszczanin, K. (2013). Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Frontiers in Plant Science, 4(August), 1–20. https://doi.org/10.3389/fpls.2013.00315
  • Chaudhary, S, Devi, P., Bhardwaj, A., Chand Jha, U., Sharma, K. D., Prasad, P. V. V., Siddique, K. H. M., Bindumadhava, H., Kumar, S., & Nayyar, H. (2020, October). Identification and characterization of contrasting genotypes/cultivars for developing heat tolerance in agricultural crops: Current status and prospects. Frontiers in Plant Science, 11 587264 https://doi.org/10.3389/fpls.2020.587264 .
  • Deva, C. R., Urban, M. O., Challinor, A. J., Falloon, P., & Svitákova, L. (2020). Enhanced leaf cooling is a pathway to heat tolerance in common bean. Frontiers in Plant Science, 11(March), 19. https://doi.org/10.3389/fpls.2020.00019
  • Giri, A., Heckathorn, S., Mishra, S., & Krause, C. (2017). Heat stress decreases levels of nutrient-uptake and -assimilation proteins in tomato roots. Plants, 6(1), 6. https://doi.org/10.3390/plants6010006
  • Hameed, M., Keitel, C., Ahmad, N., Mahmood, T., & Trethowan, R. (2015). Screening of tomatoes germplasm for heat stress tolerance under controlled conditions. Procedia Environmental Sciences, 29(Agri), 173–174. https://doi.org/10.1016/j.proenv.2015.07.245
  • Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192(March), 38–46 doi:10.1016/j.jplph.2015.12.011.
  • Islam, M. (2011). Effect of temperature on photosynthesis, yield attributes and yield of tomato genotypes. International Journal of Experimental Agriculture, 2 1 , 8–11 http://ggfjournals.com/assets/uploads/MIN-171_Tomato_(Tariqul)_(8-11).pdf .
  • Kapotis, G., Zervoudakis, G., Veltsistas, T., & Salahas, G. (2003). Comparison of chlorophyll meter readings with leaf chlorophyll concentration in Amaranthus Vlitus: Correlation with physiological processes. Russian Journal of Plant Physiology, 50(3), 395–397. https://doi.org/10.1023/A:1023886623645
  • Khanal, B. (2012). Effect of day and night temperature on pollen characteristics, fruit quality and storability of tomato. Norwegian University of Life Sciences. https://nmbu.brage.unit.no/nmbu-xmlui/bitstream/handle/11250/189462/Thesis_BikashKhanal.pdf?sequence=1
  • Kimura, S., & Sinha, N. (2008). Tomato (Solanum lycopersicum): A model fruit-bearing crop. Cold Spring Harbor Protocols, 11(11), db.emo105. https://doi.org/10.1101/pdb.emo105
  • Kromdijk, J., Głowacka, K., Leonelli, L., Gabilly, S. T., Iwai, M., Niyogi, K. K., & Long, S. P. (2016). Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science, 354(6314), 857–861 doi:10.1126/science.aai8878.
  • Kugblenu, Y. O., Oppong Danso, E., Ofori, K., Andersen, M. N., Abenney-Mickson, S., Sabi, E. B., Plauborg, F., Abekoe, M. K., Ofosu-Anim, J., Ortiz , R., Jorgensen, S.T. et al. (2013). Screening tomato genotypes for adaptation to high temperature in West Africa. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 63(6), 516–522. https://doi.org/10.1080/09064710.2013.813062
  • Kuhlgert, S., Austic, G., Zegarac, R., Osei-Bonsu, I., Hoh, D., Chilvers, M. I., Roth, M. G., Bi, K., TerAvest, D., Weebadde, P., & Kramer, D. M. (2016, 10). MultispeQ beta: A tool for large-scale plant phenotyping connected to the open PhotosynQ network. Royal Society Open Science, 3(10), 160592. https://doi.org/10.1098/rsos.160592
  • Kumagai, E., Araki, T., & Kubota, F. (2009). Correlation of chlorophyll meter readings with gas exchange and chlorophyll fluorescence in flag leaves of rice (Oryza Sativa L.) plants. Plant Production Science, 12(1), 50–53 https://doi.org/10.1626/pps.12.50.
  • Lee, K., Nigmatullayevich Rajametov, S., Jeong, H.-B., Cho, M.-C., Lee, O.-J., Kim, S.-G., Yang, E.-Y., & Chae, W.-B. (2022). Comprehensive understanding of selecting traits for heat tolerance during vegetative and reproductive growth stages in tomato. Agronomy, 12(4), 834. https://doi.org/10.3390/agronomy12040834
  • Li, L., Li, J., Gao, Q., & Chen, J.-X. (2015). Effects of day and night temperature difference on growth, development, yield and fruit quality of tomatoes. Ying Yong Sheng Tai Xue Bao = the Journal of Applied Ecology, 26(9), 2700–2706. http://www.ncbi.nlm.nih.gov/pubmed/26785551
  • Lin, K.-H., Lee, S.-P., George Kuo, C., Chen, J.-T., Yeh, W.-L., & Lin, K.-H. (2006). RAPD markers for the identification of yield traits in tomatoes under heat stress via bulked segregant analysis. Hereditas, 143(2006), 142–154. https://doi.org/10.1111/j.2006.0018-0661.01938.x
  • Mansour, A., Ismail, H. M., Fawzy Ramadan, M., & Gyulai, G. (2009). Variations in tomato (Lycopersicon Esculentum) cultivars grown under heat stress. Journal Für Verbraucherschutz Und Lebensmittelsicherheit, 4(May), 118–127. https://doi.org/10.1007/s00003-009-0474-5
  • Melomey, L., Danquah, A., Offei, S. K., Ofori, K., Danquah, E., & Osei, M. (2019). Review on tomato (Solanum Lycopersicum, L.) Improvement Programmes in Ghana Nyaku, S. T., Danquah, A. eds. . In Recent advances in tomato breeding and production. IntechOpen. https://doi.org/10.5772/intechopen.75843
  • Muller, P., Li, X.-P., & Niyogi, K. K. (2001). Non-Photochemical quenching. A response to excess light energy. Plant Physiology, 125(4), 1558–1566. https://doi.org/10.1104/pp.125.4.1558
  • Murata, N., Takahashi, S., Nishiyama, Y., & Allakhverdiev, S. I. (2007). Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta, 1767(6), 414–421 https://doi.org/10.1016/j.bbabio.2006.11.019.
  • Osei‐Bonsu, I., McClain, A. M., Walker, B. J., Sharkey, T. D., & Kramer, D. M. (2021). The roles of photorespiration and alternative electron acceptors in the responses of photosynthesis to elevated temperatures in cowpea. Plant, Cell & Environment, 44(7), 2290–2307. https://doi.org/10.1111/pce.14026
  • Payne, R. W. (2009). Genstat. WIREs Computational Statistics, 1(2), 255–258. https://doi.org/10.1002/wics.32
  • Prasad, P. V. V., Bheemanahalli, R., & Krishna Jagadish, S. V. (2017). Field crops and the fear of heat stress—Opportunities, challenges and future directions. Field Crops Research, 200 2017 , 114–121. https://doi.org/10.1016/j.fcr.2016.09.024
  • Rajametov, S. N., Yang, E. Y., Jeong, H. B., Cho, M. C., Chae, S. Y., & Paudel, N. (2021). Heat treatment in two tomato cultivars: A study of the effect on physiological and growth recovery. Horticulturae, 7(5), 119. https://doi.org/10.3390/horticulturae7050119
  • Reynolds, M. P., Nagarajan, S., Razzaque, M. A., & Ageeb, O. A. A. (2001). Heat tolerance. In M. P. Reynolds & A. Mcnab (Eds.), Application of physiology in wheat breeding (pp. 124–135). CIMMYT.
  • Rick, C. M. (1978). The Tomato. The Scientific American, 239(2), 66–67. https://doi.org/10.1038/scientificamerican0878-76
  • Rivero, R. M., Ruiz, J. M., García, P. C., López-Lefebre, L. R., Sánchez, E., & Romero, L. (2001). Resistance to cold and heat stress: Accumulation of phenolic compounds in tomato and watermelon plants. Plant Science : An International Journal of Experimental Plant Biology, 160(2), 315–321 doi:10.1016/s0168-9452(00)00395-2.
  • Saeed, A., Hayat, K., Ali Khan, A., & Iqbal, S. (2007). Heat tolerance studies in tomato (Lycopersicon Esculentum Mill.). International Journal of Agriculture & Biology, 9(4), 649–652 1560–8530/2007/09–4–649–652.
  • Salvucci, M. E., & Crafts-Brandner, S. J. (2004). Inhibition of photosynthesis by heat stress: The activation state of rubisco as a limiting factor in photosynthesis. Physiologia Plantarum, 120(2), 179–186. https://doi.org/10.1111/j.0031-9317.2004.0173.x
  • Sato, S., Peet, M. M., & Thomas, J. F. (2000). Physiological factors limit fruit set of tomato (Lycopersicon Esculentum Mill.) under chronic, mild heat stress. Plant, Cell & Environment, 23(7), 719–726. https://doi.org/10.1046/j.1365-3040.2000.00589.x
  • Shippers, R. R. (2000). African indigenous vegetables. An overview of the cultivated species. University of Greenwich, Natural Resources Institute.
  • Sita, K., Sehgal, A., Nair, R. M., Nair, R. M., Vara Prasad, P. V., Kumar, S., Gaur, P. M., Singh, P. K., Prasad, S. M., Dubey, N. K., Pandey, A. C., Sahi, S., & Chauhan, D. K. (2017). Food legumes and rising temperatures: Effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Frontiers in Plant Science, 8(October), 1–30. https://doi.org/10.3389/fpls.2017.01658
  • Stevens, M. A., & Rudich, J. (1978). Genetic potential for overcoming physiological limitations on adaptability, yield, and quality of the tomato. HortScience, 13 6 , 673–678 .
  • Takahashi, S., & Murata, N. (2008). How do environmental stresses accelerate photoinhibition? Trends in Plant Science, 13(4), 178–182. https://doi.org/10.1016/j.tplants.2008.01.005
  • Tietz, S., Hall, C. C., Cruz, J. A., & Kramer, D. M. (2017). NPQ (T): A chlorophyll fluorescence parameter for rapid estimation and imaging of non-photochemical quenching of excitons in photosystem-II-associated antenna complexes. Plant, Cell & Environment, 40(8), 8. https://doi.org/10.1111/pce.12924
  • Van Ploeg, D., & Heuvelink, E. (2005). Influence of sub-optimal temperature on tomato growth and yield: A review. The Journal of Horticultural Science and Biotechnology, 80(6), 652–659. https://doi.org/10.1080/14620316.2005.11511994
  • Villareal, R. L., & Lai, S. H. (1979 Development of heat-tolerant tomato varieties in the tropics 1st International Symposium on Tropical Tomato October 23-31 Shanhua, Tainan, Taiwan). . In . Asian Vegetable Research and Development Center 188–200 .
  • Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011
  • Walker, B. J., Drewry, D. T., Slattery, R. A., VanLoocke, A., Cho, Y. B., & Ort, D. R. (2018). Chlorophyll can be reduced in crop canopies with little penalty to photosynthesis. Plant Physiology, 176(2), 1215–1232 doi:https://doi.org/10.1104/2Fpp.17.01401 .
  • Willcox, J. K., Catignani, G. L., & Lazarus, S. (2003). Tomatoes and cardiovascular health. Critical Reviews in Food Science and Nutrition, 43(1), 1–18. https://doi.org/10.1080/10408690390826437
  • Wolff, H. (1999). Economics of tomato production with special reference to aspects of plant protection: A case study of two tomato production systems in Brong-Ahafo Region, Ghana. Ghanaian-German project for integrated crop protection (GTZ: Eschborn).
  • Zhang, X., Zhou, Q., Wang, X., Cai, J., Dai, T., Cao, W., & Jiang, D. (2016). Physiological and transcriptional analyses of induced post-anthesis thermo-tolerance by heat-shock pretreatment on germinating seeds of winter wheat. Environmental and Experimental Botany, 131, 181–189. https://doi.org/10.1016/j.envexpbot.2016.08.002
  • Zhou, R., Kjaer, K. H., Rosenqvist, E., Yu, X., Wu, Z., & Ottosen, C.-O. (2017). Physiological response to heat stress during seedling and anthesis stage in tomato genotypes differing in heat tolerance. Journal of Agronomy and Crop Science, 203(1), 68–80. https://doi.org/10.1111/jac.12166
  • Zhou, R, Xiaqing, Y., Kjær, K. H., Rosenqvist, E., Otto Ottosen, C., & Zhen, W. (2015). Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance. Environmental and Experimental Botany, 118(October), 1–11 https://doi.org/10.1016/j.envexpbot.2015.05.006.
  • Zinn, K. E., Tunc-Ozdemir, M., & Harper, J. F. (2010). Temperature stress and plant sexual reproduction: Uncovering the weakest links. Journal of Experimental Botany, 61(7), 1959–1968. https://doi.org/10.1093/jxb/erq053