779
Views
0
CrossRef citations to date
0
Altmetric
FOOD SCIENCE & TECHNOLOGY

Spatio-temporal characteristics of fertilizer utilization efficiency in China during 1999-2018: a biennial weight modified Russell model

, , , , & ORCID Icon
Article: 2141794 | Received 08 Jun 2022, Accepted 26 Oct 2022, Published online: 11 Nov 2022

References

  • Aigner, D., Lovell, C. A. K., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6(1), 21–19. https://doi.org/10.1016/0304-4076(77)90052-5
  • Battese, G. E., & Coelli, T. J. (1995). A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empirical Economics, 20(2), 325–332. https://doi.org/10.1007/BF01205442
  • Borozan, D. (2018). Technical and total factor energy efficiency of European regions: A two-stage approach. Energy, 152, 521–532. https://doi.org/10.1016/j.energy.2018.03.159
  • Chao, S. L. (2017). Integrating multi-stage data envelopment analysis and a fuzzy analytical hierarchical process to evaluate the efficiency of major global liner shipping companies. Maritime Policy & Management, 44(4), 496–511. https://doi.org/10.1080/03088839.2017.1298863
  • Chen, P., Yu, M., Chang, C., Hsu, S., & Managi, S. (2015). Nonradial directional performance measurement with undesirable outputs: An application to OECD and Non-OECD countries. International Journal of Information Technology & Decision Making, 14(3), 481–520. https://doi.org/10.1142/S0219622015500091
  • Chukalla, A. D., Reidsma, P., van Vliet, M. T. H., Silva, J. V., van Ittersum, M. K., Jomaa, S., Rode, M., Merbach, I., & van Oel, P. R. (2020). Balancing indicators for sustainable intensification of crop production at field and river basin levels. Science of the Total Environment, 705, 135925. https://doi.org/10.1016/j.scitotenv.2019.135925
  • Dagum, C. (1998). A new approach to the decomposition of the gini income inequality ratio. Income Inequality, Poverty, and Economic Welfare, 47–63. https://doi.org/10.1007/978-3-642-51073-1_4
  • Fujii, H., Managi, S., & Matousek, R. (2014). Indian bank efficiency and productivity changes with undesirable outputs: A disaggregated approach. Journal of Banking & Finance, 38, 41–50. https://doi.org/10.1016/j.jbankfin.2013.09.022
  • Fukuyama, H., & Weber, W. L. (2009). A directional slacks-based measure of technical inefficiency. Socio-Economic Planning Sciences, 43(4), 274–287. https://doi.org/10.1016/j.seps.2008.12.001
  • Gabriel, J. L., Alonso-Ayuso, M., García-González, I., Hontoria, C., & Quemada, M. (2016). Nitrogen use efficiency and fertiliser fate in a long-term experiment with winter cover crops. European Journal of Agronomy, 79, 14–22. https://doi.org/10.1016/j.eja.2016.04.015
  • Granderson, G. (1997). Parametric analysis of cost inefficiency and the decomposition of productivity growth for regulated firms. Applied Economics, 29(3), 339–348. https://doi.org/10.1080/000368497327119
  • Greene, W. (2010). A stochastic frontier model with correction for sample selection. Journal of Productivity Analysis, 34(1), 15–24. https://doi.org/10.1007/s11123-009-0159-1
  • Guan, W. W., Wu, K., & Carnes, F. (2016). Modeling spatiotemporal pattern of agriculture-feasible land in China. Transactions in GIS, 20(3), 426–447. https://doi.org/10.1111/tgis.12225
  • Guo, H., & Liu, X. (2020). Time-space evolution of China’s agricultural green total factor productivity. Chinese Journal of Management Science, 28(9), 66–75. https://doi.org/10.16381/j.cnki.1003-207x.2020.09.007
  • Habib, M. A., & Ljungqvist, A. (2005). Firm value and managerial incentives: A stochastic frontier approach. The Journal of Business, 78(6), 2053–2094. https://doi.org/10.1086/497040
  • Hellegers, P., & van Halsema, G. (2021). SDG indicator 6.4.1 “change in water use efficiency over time”: Methodological flaws and suggestions for improvement. Science of the Total Environment, 801. https://doi.org/10.1016/j.scitotenv.2021.149431
  • Hoang, V.-N., & Coelli, T. (2011). Measurement of agricultural total factor productivity growth incorporating environmental factors: A nutrients balance approach. Journal of Environmental Economics and Management, 62(3), 462–474. https://doi.org/10.1016/j.jeem.2011.05.009
  • Huang, X., Feng, C., Qin, J., Wang, X., & Zhang, T. (2022). Measuring China’s agricultural green total factor productivity and its drivers during 1998–2019. Science of the Total Environment, 829, 154477. https://doi.org/10.3390/ijerph16173105
  • Huang, X., Xu, X., Wang, Q., Zhang, L., Gao, X., & Chen, L. (2019). Assessment of agricultural carbon emissions and their spatiotemporal changes in China, 1997–2016. International Journal of Environmental Research and Public Health, 16(17), 3105. https://doi.org/10.3390/ijerph16173105
  • Hu, W., & Xiong, Z. X. (2021). Do stringent environmental regulations help improve the total factor carbon productivity? Empirical evidence from China’s industrial sectors. Applied Economics, 53(55), 6398–6411. https://doi.org/10.1080/00036846.2021.1940083
  • Kumbhakar, S. C., Denny, M., & Fuss, M. (2000). Estimation and decomposition of productivity change when production is not efficient: A paneldata approach. Econometric Reviews, 19(4), 312–320. https://doi.org/10.1080/07474930008800481
  • Land, K. C., Lovell, C. A. K., & Thore, S. (1993). Chance-constrained data envelopment analysis. Managerial and Decision Economics, 14(6), 541–554. https://doi.org/10.1002/mde.4090140607
  • Lim, D.-J. (2016). Inverse DEA with frontier changes for new product target setting. European Journal of Operational Research, 254(2), 510–516. https://doi.org/10.1016/j.ejor.2016.03.059
  • Lin, B. Q., & Tan, R. P. (2016). Ecological total-factor energy efficiency of China’s energy intensive industries. Ecological Indicators, 70, 480–497. https://doi.org/10.1016/j.ecolind.2016.06.026
  • Liu, Y., & Feng, C. (2019). What drives the fluctuations of “green” productivity in China’s agricultural sector? A weighted Russell directional distance approach. Resources, Conservation and Recycling, 147, 201–213. https://doi.org/10.1016/j.resconrec.2019.04.013
  • Liu, H., Sun, S., & Li, C. (2019). Regional difference and dynamic evolution of fertilizer use efficiency in China under environmental constraints. Issues in Agricultural Economy, 8, 65–75. https://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsQ0hJTmV3UzIwMjExMTE2Eg9ueWpqd3QyMDE5MDgwMDgaCDR1OGRlMmR4
  • Liu, J. X., Wang, H., Rahman, S., & Sriboonchitta, S. (2021b). Energy efficiency, energy conservation and determinants in the agricultural sector in emerging economies. Agriculture-Basel, 11(8). https://doi.org/10.3390/agriculture11080773
  • Liu, G., Wang, B., & Zhang, N. (2016). A coin has two sides: Which one is driving China’s green TFP growth? Economic Systems, 40(3), 481–498. https://doi.org/10.1016/j.ecosys.2015.12.004
  • Liu, D., Zhu, X., & Wang, Y. (2021a). China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. Journal of Cleaner Production, 278, 123692. https://doi.org/10.1016/j.jclepro.2020.123692
  • Li, W. W., Wang, W. P., Wang, Y., & Ali, M. (2018). Historical growth in total factor carbon productivity of the Chinese industry - A comprehensive analysis. Journal of Cleaner Production, 170, 471–485. https://doi.org/10.1016/j.ecosys.2015.12.004
  • Long, X. L., Luo, Y. S., Sun, H. P., & Tian, G. (2018). Fertilizer using intensity and environmental efficiency for China’s agriculture sector from 1997 to 2014. Natural Hazards, 92(3), 1573–1591. https://doi.org/10.1007/s11069-018-3265-4
  • Losa, E. T., Arjomandi, A., Dakpo, K. H., & Bloomfield, J. (2020). Efficiency comparison of airline groups in annex 1 and non-annex 1 countries: A dynamic network DEA approach. Transport Policy, 99, 163–174. https://doi.org/10.1016/j.tranpol.2020.08.013
  • Nishimizu, M., & Page, J. M. (1982). Total factor productivity growth, technological progress and technical efficiency change: Dimensions of productivity change in Yugoslavia, 1965-78. The Economic Journal, 92(368), 920–936. https://doi.org/10.2307/2232675
  • Ohene-Asare, K., Tetteh, E. N., & Asuah, E. L. (2020). Total factor energy efficiency and economic development in Africa. Energy Efficiency, 13(6), 1177–1194. https://doi.org/10.1007/s12053-020-09877-1
  • Pastor, J. T., Asmild, M., & Lovell, C. A. K. (2011). The biennial Malmquist productivity change index. Socio-Economic Planning Sciences, 45(1), 10–15. https://doi.org/10.1016/j.seps.2010.09.001
  • Pronger, J., Campbell, D. I., Clearwater, M. J., Mudge, P. L., Rutledge, S., Wall, A. M., & Schipper, L. A. (2019). Toward optimisation of water use efficiency in dryland pastures using carbon isotope discrimination as a tool to select plant species mixtures. Science of the Total Environment, 665, 698–708. https://doi.org/10.1016/j.scitotenv.2019.02.014
  • Quah, D. (1993). Galton’s fallacy and tests of the convergence hypothesis. The Scandinavian Journal of Economics, 95(4), 427–443. https://doi.org/10.2307/3440905
  • Rebolledo-Leiva, R., Angulo-Meza, L., Iriarte, A., & Gonzalez-Araya, M. C. (2017). Joint carbon footprint assessment and data envelopment analysis for the reduction of greenhouse gas emissions in agriculture production. Science of the Total Environment, 593, 36–46. https://doi.org/10.1016/j.scitotenv.2017.03.147
  • Ren, Y. J., Peng, Y. L., Campos, B. C., & Li, H. J. (2021). The effect of contract farming on the environmentally sustainable production of rice in China. SUSTAINABLE PRODUCTION AND CONSUMPTION, 28, 1381–1395. https://doi.org/10.1016/j.spc.2021.08.011
  • Shestalova, V. (2003). Sequential malmquist indices of productivity growth: An application to OECD industrial activities. Journal of Productivity Analysis, 19(2), 211–226. https://doi.org/10.1023/A:1022857501478
  • Wang, R., & Feng, Y. (2021). Research on China’s agricultural carbon emission efficiency evaluation and regional differentiation based on DEA and Theil models. International Journal of Environmental Science and Technology, 18(6), 1453–1464. https://doi.org/10.1007/s13762-020-02903-w
  • Wang, Y. B., Shi, L. J., Zhang, H. J., & Sun, S. K. (2017). A data envelopment analysis of agricultural technical efficiency of Northwest Arid Areas in China. Frontiers of Agricultural Science and Engineering, 4(2), 195–207. https://doi.org/10.15302/j-fase-2017153
  • Wu, G., Baležentis, T., Sun, C., & Xu, S. (2019). Source control or end-of-pipe control: Mitigating air pollution at the regional level from the perspective of the total factor productivity change decomposition. Energy Policy, 129, 1227–1239. https://doi.org/10.1016/j.enpol.2019.03.032
  • Wu, G. Y., Riaz, N., & Dong, R. (2022). China’s agricultural ecological efficiency and spatial spillover effect. Environment Development and Sustainability. https://doi.org/10.1016/j.enpol.2019.03.032
  • Xu, X., Huang, X., Huang, J., Gao, X., & Chen, L. (2019). Spatial-temporal characteristics of agriculture green total factor productivity in China, 1998–2016: Based on more sophisticated calculations of carbon emissions. International Journal of Environmental Research and Public Health, 16(20), 3932. https://doi.org/10.3390/ijerph16203932
  • Xu, X. C., Wang, Q. Q., & Li, C. (2022a). The impact of dependency burden on urban household health expenditure and its regional heterogeneity in China: Based on quantile regression method. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.876088
  • Xu, X. C., Yang, H. R., & Li, C. (2022b). Theoretical model and actual characteristics of air pollution affecting health cost: A review. International Journal of Environmental Research and Public Health, 19(6). https://doi.org/10.3390/ijerph19063532
  • Yadav, R. L. (2003). Assessing on-farm efficiency and economics of fertilizer N, P and K in rice wheat systems of India. Field Crops Research, 81(1), 39–51. https://doi.org/10.1016/S0378-4290(02)00198-3
  • Yang, J. H., & Lin, Y. B. (2020). Driving factors of total-factor substitution efficiency of chemical fertilizer input and related environmental regulation policy: A case study of Zhejiang Province. Environmental Pollution, 263. https://doi.org/10.1016/j.envpol.2020.114541
  • Yang, J., Wang, H., Jin, S. Q., Chen, K., Riedinger, J., & Peng, C. (2016a). Migration, local off-farm employment, and agricultural production efficiency: Evidence from China. Journal of Productivity Analysis, 45(3), 247–259. https://doi.org/10.1007/s11123-015-0464-9
  • Yang, Y., Wang, S., & Wang, H. (2016b). Evaluation of maize production environmental efficiency based on dynamic DEA in Northeast China. Journal of Agrotechnical Economics, 08, 58–71. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2016&filename=NYJS201608006&v=MjkyOTQ5RllvUjhlWDFMdXhZUzdEaDFUM3FUcldNMUZyQ1VSN2lmWXVkdkZpSGdWYnJMS3pUQmZiRzRIOWZNcDQ=
  • Yaqubi, M., Shahraki, J., & Sabouni, M. S. (2016). On dealing with the pollution costs in agriculture: A case study of paddy fields. Science of the Total Environment, 556, 310–318. https://doi.org/10.1016/j.scitotenv.2016.02.193
  • Zhang, N., Zhang, G. L., & Li, Y. (2019). Does major agriculture production zone have higher carbon efficiency and abatement cost under climate change mitigation? Ecological Indicators, 105, 376–385. https://doi.org/10.1016/j.ecolind.2017.12.015
  • Zhang, S., Zhang, H., Zhang, Z., & Liu, Y. (2022). Evaluation and policy prospect of zero growth action of chemical fertilizer in the 13th five-year plan. Environmental Protection, 50, 31–36. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2022&filename=HJBU202205004&v=MTcxMDBMU2ZKZTdHNEhOUE1xbzlGWUlSOGVYMUx1eFlTN0RoMVQzcVRyV00xRnJDVVI3aWZZdVptRnlqaFVickI=
  • Zhang, N., Zhou, P., & Choi, Y. (2013). Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis. Energy Policy, 56, 653–662. https://doi.org/10.1016/j.enpol.2013.01.033
  • Zheng, J. F., Gan, P. D., Ji, F., He, D. X., & Yang, P. (2021). Growth and energy use efficiency of grafted tomato transplants as affected by LED light quality and photon flux density. Agriculture-Basel, 11(9). https://doi.org/10.3390/agriculture11090816