2,116
Views
1
CrossRef citations to date
0
Altmetric
SOIL & CROP SCIENCES

Mycorrhizal and non-mycorrhizal mushroom cultivation- constraints and opportunities for Sub-Saharan Africa

ORCID Icon &
Article: 2147486 | Received 28 Jun 2022, Accepted 10 Nov 2022, Published online: 25 Nov 2022

References

  • Abebe, W. (2021). Review on physiology of fungi. International Journal of Novel Research in Interdisciplinary Studies, 8, 40–24. https://www.noveltyjournals.com/upload/paper/REVIEW%20ON%20PHYSIOLOGY%20OF%20FUNGI.pdf
  • Abon, M. D., Dulay, R. M. R., Kalaw, S. P., Romero-Roman, M. E., Arana-Vera, L. P., Reyes-Borja, W. O., & Reyes, R. G. (2020). Effects of culture media and physical factors on the mycelial growth of the three wild strains of Volvariella volvacea from Ecuador. Journal of Applied Biology & Biotechnology, 8, 60–63. https://doi.org/10.7324/JABB.2020.80610
  • Afzal, R., Akram, A., Qureshi, R., Akram, Z., & Sultana, K. N. (2019). Efficacy of grain spawn and lime/gypsum ratio on mycelial growth of Oyster mushroom. Advances in Biotechnology & Microbiology, 13, 1–5. https://doi.org/10.19080/AIBM.2019.13.555871
  • Agnolucci, M., Avio, L., Pepe, A., Turrini, A., Cristani, C., Bonini, P., Cirino, V., Colosimo, F., Ruzzi, M., & Giovannetti, M. (2019). Bacteria associated with a commercial mycorrhizal inoculum: Community composition and multifunctional activity as assessed by Illumina sequencing and culture-dependent tools. Frontiers in Plant Science, 9, 1–13. https://doi.org/10.3389/fpls.2018.01956
  • Ashraf, J., Ali, M. A., Ahmad, W., Ayyub, C. M., & Shafi, J. (2013). Effect of different substrate supplements on Oyster mushroom (Pleurotus spp.) production. Food Science and Technology, 1(3), 44–51. https://doi.org/10.13189/fst.2013.010302
  • Atikpo, M., Onokpise, O., Abazinge, M., Louime, C., Dzomeku, M., Boateng, L., & Awumbilla, B. (2008). Sustainable mushroom production in Africa: A case study in Ghana. African Journal of Biotechnology, 7(3), 249–253. http://www.academicjournals.org/AJB
  • Ayanfunke, T. S. (2019). Training needs of mushroom (Agaricus biosporus) farmers in Oyo state, Nigeria. Journal of Agricultural Extension, 23. https://dx.doi.org/10.4314/jae.v23i3.8
  • Baumgartner, K., Coetzee, M. P. A., & Hoffmeister, D. (2011). Secrets of the subterranean pathosystem of Armillaria. Molecular Plant Pathology, 12(6), 515–534. https://doi.org/10.1111/j.1364-3703.2010.00693.x
  • Bedade, D. K., Singhal, R. S., Turunen, O., Deska, J., & Shamekh, S. (2016). Biochemical characterization of extracellular cellulase from Tuber maculatum mycelium produced under submerged fermentation. Applied Biochemistry and Biotechnology, 1–12. https://doi.org/10.1007/s12010-016-2248-8
  • Beejan, P. H. F., & Nowbuth, R. D. (2010). Shiitake, a new mushroom variety proposed in Mauritius. University of Mauritius Research Journal, 16(1), 100–113
  • Besufekad, Y., Mekonnen, A., Girma, B., Daniel, R., Tassema, G., Melkamu, J., Asefa, M., Fikiru, T., & Denboba, L. (2020). Selection of appropriate substrate for production of Oyster mushroom (Pleurotus ostreatus). Journal of Yeast and Fungal Research, 11(1), 15–25. https://doi.org/10.5897/JYFR2019.0187
  • Biswas, D., & Biswas, J. (2017). Major deteriorative, pathogenic and beneficial fungi reported from various subterranean caves of the world: A mini review. International Journal of Ecosystem, 7, 11–16. https://doi.org/10.5923/j.ije.20170701.02
  • Bloesch, U., & Mbago, F. (2008). The potential of wild edible mushrooms in the Miombo woodlands of the Selous-Niassa Wildlife Corridor for the livelihood improvement of the local population. Dar es Salaam: Ministry of Natural Resources and Tourism-Wildlife Division. Mushroom Study Selous Niassa Wildlife Corridor. Yumpu Publishing.
  • Bonfante, P., & Anca, I. A. (2009). Plants, mycorrhizal fungi, and bacteria: A network of interactions. Annual Review of Microbiology, 63(1), 363–383. https://doi.org/10.1146/annurev.micro.091208.073504
  • Borah, T. R., Singh, A. R., Paul, P., Talang, H., Kuamr, B., & Hazarika, S. (2019). Mushroom production for livelihood improvement Spawn production and mushroom cutlivation technology (pp. 46). ICAR Research Complex for NEH Region.
  • Bruzos, M. M. (2019). The potential of mycorrhizal helper bacteria as PGPR. In H. B. Singh, B. K. Sarma, & C. Keswani (Eds.), Advances in PGPR Research. CAB International; (pp. 246–254). CABI.
  • Büntgen, U., Čejka, T., Trnka, M., & Thomas, P. W. (2021). Rethinking a sustainable truffle sector under global crises. ERDKUNDE, 75(4), 311–314. https://doi.org/10.3112/erdkunde.2021.04.06
  • Butler, G. M., & Wood, A. E. (1998). Effects of environmental factors on basidiome development in the resupinate polypore Phellinuscontiguous. Transaction of the British Mycological Society, 90(1), 75–83. https://doi.org/10.1016/S0007-1536(88)80182-7
  • Capinha, C. (2018). Predicting the timing of ecological phenomena using dates of species occurrence records: A methodological approach and test case with mushrooms. International Journal Biometeorology, 63(8), 1–10. https://doi.org/10.1007/s00484-019-01714-0
  • Chakwiya, A., Van der Linde, E. J., Chidamba, L., & Korsten, L. (2019). Diversity of cladobotryum mycophilum isolates associated with cobweb disease of agaricus bisporus in the South African mushroom industry. European Journal of Plant Pathology, 154(3), 767–776. https://doi.org/10.1007/s10658-019-01700-7
  • Chang, S. T. (1972). The chinese mushroom (Volvariella volvacea): morphology, cytology, genetics, nutrition and cultivation. Chinese University Press;.
  • Chang, S. T. (1977). The origin and early development of straw mushroom cultivation. Economic Botany, 31(3), 374–376. https://doi.org/10.1007/BF02866890
  • Chang, S.-T., & Miles, P. G. (2004). Mushrooms: Cultivation, nutritional value, medicinal effect and environmental impact (2nd ed.). CRC Press;.
  • Chen, Y., Sossah, F. L., Zhiwen, L., Yancong, L., Tian, L., Sun, X., Li, C., Song, B., & Li, Y. (2021). Effect of wheat bran and maize straw substrates on the agronomic traits and nutritional content of Auricularia cornea cv Yu Muer. Scientia Horticulturae, 286(2021), 1–7. 110200 0304-4238. https://doi.org/10.1016/j.scienta.2021.110200
  • Cherfas, J. (1991). Disappearing mushrooms: Another mass extinction? Science, 254(5037), https://doi.org/10.1126/science.254.5037.1458
  • Chetia, H., Kabiraj, D., Bharali, B., Ojha, S., Barkataki, M., Saikia, D., Singh, T., Mosahari, P. V., Sharma, P., & Bora, U. (2019). Exploring the benefits of endophytic fungi via omics. In B. P. Singh (Ed.), Advances in endophytic fungal research (pp. 51–81). Springer;.
  • Chioza, A., & Ohga, S. (2014). Cultivated mushrooms in Malawi: A look at the present situation advances in microbiology, 4, 6–11. http://dx.doi.org/10.4236/aim.2014.41002
  • Cho, Y. S., Kim, J. S., Crowley, D., & Cho, B. G. (2003). Growth promotion of the edible fungus Pleurotus ostreatus by fluorescent pseudomonads. FEMS Microbiology Letters, 218(2), 271–276. https://doi.org/10.1016/S0378-1097(02)01144-8
  • Courty, P., Buée, M., Diedhiou, A. G., Frey-Klett, P., Tacon, F. L., Rineau, F., Turpault, M., Uroz, S., & Garbaye, J. (2010). The role of ectomycorrhizal communities in forest ecosystem processes: New perspectives and emerging concepts. Soil Biololgy and Biochemistry, 42, 679–698. https://doi.org/10.1016/j.soilbio.2009.12.006
  • Crotty, F. V., & Adl, S. M. (2019). Competition and predation in soil fungivorous microarthropods using stable isotope ratio mass spectrometry. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.01274
  • Danell, E., & Camacho, F. J. (1997). Successful cultivation of the golden chanterelle-. Nature, 385(6614), 303. https://doi.org/10.1038/385303b0
  • Debaud, J. C., & Gay, G. (1987). IN VITRO FRUITING UNDER CONTROLLED CONDITIONS OF THE ECTOMYCORRHIZAL FUNGUS HEBELOMA CYLINDROSPORUM ASSOCIATED WITH PINUS PINASTER. New Phytology, 105(3), 429–435. https://doi.org/10.1111/j.1469-8137.1987.tb00880.x
  • De-miguel, S., Bonet, J. A., Pukkala, T., & de Aragón, J. M. (2014). Impact of forest management intensity on landscape-level mushroom productivity: A regional model-based scenario analysis. Forest Ecology and Management, 330, 218–227. https://doi.org/10.1016/j.foreco.2014.07.014
  • Dey, R. C., Nasiruddin, K. M., Haque, M. S., & Al Munsur, M. A. Z. (2008). Production of oyster mushroom on different substrates using cylindrical block system. Progressive Agriculture, 19(1), 7–12. https://doi.org/10.3329/pa.v19i1.16983
  • Díaz, G., Carrillo, C., & Honrubia, M. (2009). Production of Pinus halepensis seedlings inoculated with the edible fungus Lactarius deliciosus under nursery conditions. New Forests, 38(2), 215–227. https://doi.org/10.1007/s11056-009-9142-y
  • Díaz-Godínez, G., & Téllez-Téllez, M. (2021). Mushrooms as edible foods. In X. Dai, M. Sharma, & J. Chen (Eds.), Fungi in sustainable food production (pp. 143–164). Springer.
  • Dissasa, G. (2022). Cultivation of different oyster mushroom (Pleurotus species) on coffee waste and determination of their relative biological efficiency and pectinase enzyme production, Ethiopia. International Journal of Microbiology, 2022, 1–10. https://doi.org/10.1155/2022/5219939
  • Domondon, D. L., He, W., De Kimpe, N., Höfte, M., & Poppe, J. (2004). b-Adenosine, a bioactive in grass chaff stimulating mushroom production. Phytochemistry, 65(2), 181–187. https://doi.org/10.1016/j.phytochem.2003.11.004
  • Doornbos, R. F., van Loon, L. C., & Bakker, P. A. H. M. (2012). Impact of root exudates and plant defensesignaling on bacterial communities in the rhizosphere- A review. Agronomy for Sustainable Development, 32, 227–243. https://doi.org/10.1007/s13593-011-0028-y
  • Dulal, S. (2019). An overview of mushroom farming. Conference Paper. January 2019. https://doi.org/10.13140/RG.2.2.28189.87526
  • Edman, M., Hagos, S., & Carlsson, F. (2021). Warming effects on wood decomposition depend on fungal assembly history. Journal of Ecology, 109(4), 1919–1930. https://doi.org/10.1111/1365-2745.13617
  • El-Nour, H. H. A., & Ibraheim, A. M. (2021). Effect of some organic applications on biological efficiency and productivity of mushroom (Pleurotus columbines) grown under uncontrolled conditions. Journal of Plant Production, 12(5), 495–503. https://doi.org/10.21608/jpp.2021.178923
  • Endo, N., Gisusi, S., Fukuda, M., & Yamada, A. (2013). In-vitromycorrhization and acclimatization of Amanita caesareoides and its relatives on Pinusdensiflora. Mycorrhiza, 23(4), 303–315. https://doi.org/10.1007/s00572-012-0471-x
  • Ferdousi, J., Al Riyadh, Z., Hossain, M. I., Saha, S. R., & Zakaria, M. (2019). Mushroom production benefits, status, challenges and opportunities in Bangladesh: A review. Ann. Res. & Rev. Biol, 34, 1–13. https://doi.org/10.9734/ARRB/2019/v34i630169
  • Fernandes, T., Garrine, C., Ferrão, J., Bell, V., & Varzakas, T. (2021). Mushroom nutrition as preventative healthcare in Sub-Saharan Africa. Annual Research & Review in Biology, 34(6), 1–13. https://doi.org/10.3390/app11094221
  • Fernandez-Conrad, P., Jactel, H., Robin, C., Tack, A. J. M., & Castagneyrol, B. (2018). Fungi reduce preference and performance of insect herbivores on challenged plants. Ecology, 99(2), 300–311. https://doi.org/10.1002/ecy.2044
  • Ferraro, V., Venturella, G., Pecoraro, L., Gao, W., & Gargano, M. R. (2020). Cultivated mushrooms: Importance of a multipurpose crop, with special focus on Italian fungiculture. Plant Biosystems, 156(1), 130–142. https://doi.org/10.1080/11263504.2020.1837283
  • Foley, M., & Yakushenko, V. (undated). Oyster mushroom cultivation: Substrate preparation and growing in pictures. Diperolehdaripada. https://www.zanaravo.comFocusEditorSpecialIssue-DrLamKuokChoy]
  • Fortin, J. A., & Lamhamedi, M. S. (2009). Ecophysiology of sporocarp development of ectomycorrhizal basidiomycetes associated with boreal forest gymnosperms. In D. Khasa, Y. Piché, & A. P. Coughlan (Eds.), Advances in Mycorrhizal Science and Technology (pp. 161–172). NRC Research Press.
  • Frey-Klett, P., Burlinson, P., Deveau, A., Barret, M., Tarkka, M., & Sarniguet, A. (2011). Bacterial-fungal interactions, hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiology and Molecular Biology Reviews, 75(4), 583–609. https://doi.org/10.1128/MMBR.00020-11
  • Fufa, B. K., Tadesse, B. A., & Tulu, M. M. (2021). Cultivation of Pleurotus ostreatus on agricultural waste and their combination. Research Square Preprints. https://doi.org/10.21203/rs.3.rs-418176/v1
  • Gao, S., Huang, Z., Feng, X., Bian, Y., Huang, W., & Liu, Y. (2020). Bioconversion of rice straw agro-residues by Lentinula edodes and evaluation of non-volatile taste compounds in mushrooms. Scientific Reports, 10(1), 1814. https://doi.org/10.1038/s41598-020-58778-x
  • García-Montero, L. G., Pascual, C., García-Abril, A., & García-Cañete, J. (2007). Problems of using rockroses in Tuber melanosporum culture: Soil and truffle harvest associated with Cistus laurifolius. Agroforestry Systems, 70(3), 251–258. https://doi.org/10.1007/s10457-007-9053-x
  • Gateri, M. W., Muriuki, A. W., Waiganjo, M. W., & Ngeli, P. 2009. Cultivation and commercialization of edible mushrooms in Kenya: A review of prospects and challenges for smallholder production. Acta Hort 806. https://doi.org/10.17660/ActaHortic.2009.806.59
  • Gayley, D. (1938). Experimental spawn and mushroom culture II artificial composts. Annals of Applied Biology, 25(2), 322–340. https://doi.org/10.1111/j.1744-7348.1938.tb02337.x
  • Gea, F. J., Navarro, M. J., Santos, M., Diánez, F., & Carrasco, J. (2021). Control of fungal diseases in mushroom crops while dealing with fungicide resistance: A Review. Microorganisms, 9(3), 585. https://doi.org/10.3390/microorganisms9030585
  • Ghimire, A., Pandey, K. R., Joshi, Y. R., & Subedi, S. (2021). Major fungal contaminants of mushrooms and their management. International Journal of Applied Sciences and Biotechnology, 9(2), 80–93. https://doi.org/10.3126/ijasbt.v9i2.37513
  • Godbout, C., & Fortin, J. A. (1990). Cultural control of basidiome formation in Laccariabicolor in container-grown white pine seedlings. Mycological Research, 94(8), 1051–1058. https://doi.org/10.1016/S0953-7562(09)81332-4
  • Gorka, S., Mayerhofer, W., Dietrich, M., Gabriel, R., Wiesenbauer, J., Martin, V., Schreiber, P., Woebken, D., Richter, A., & Kaiser, C. (2017). The effect of local ectomycorrhizal nitrogen supply on allocation of recent photosynthates within the mycorrhizosphere. ui.adsabs.harvard.edu. Accessed 23 January 2022. https://meetingorganizer.copernicus.org/EGU2017/EGU2017-15917-1.pdf
  • Gowda, N., & Kumaran, G. S. (2014). Design and development of a hot water paddy straw pasteurizer for mushroom cultivation. Agricultural Mechanization in Asia, Africa & Latin America (AMA), 45(2), 11–18. https://www.researchgate.net/publication/285514646
  • Gowda, N., & Pandey, M. (2014). Performance evaluation of developed paddy straw pasteurizer for mushroom cultivation. Agricultural Mechanization in Asia, Africa & Latin America (AMA), 45(3), 28–36. https://www.researchgate.net/publication/293173966
  • Grimm, A., Eilertsen, L., Chen, F., Huang, R., Atterhem, L., & Xiong, S. (2021b). Cultivation of Pleurotus ostreatus mushroom on substrates made of cellulose Fibre rejects: product quality and spent substrate fuel properties. Waste and Biomass Valorization, 12(8), 4331–4340. https://doi.org/10.1007/s12649-020-01311-y
  • Grimm, D., Kuenz, A., & Rahmann, G. (2021a). Integration of mushroom production into circular food chains. Organic Agriculture, 11(4), 309–317. https://doi.org/10.1007/s13165-020-00318-y
  • Grossart, H.-P., Van den Wyngaert, S., Kagami, M., Wurzbacher, C., Cunliffe, M., & Rojas-Jimenez, K. (2019). Fungi in aquatic ecosystems. Nature Reviews. Microbiology, 17(6), 339–354. accessed 090821. https://doi.org/10.1038/s41579-019-0175-8
  • Gruen, H. E. (1964). Mushroom growing in Japan. Boston Mycological Club Bull, 1, 1–5.
  • Gründemann, C., Reinhardt, J. K., & Lindequist, U. (2019). European medicinal mushrooms: Do they have potential for medicine-An update. Phytomedicine, 66. https://doi.org/10.1016/j.phymed.2019.153131
  • Hall, I., Fitzpatrick, N., Miros, P., & Zambonelli, A. (2017a). Counter-season cultivation of truffles in the Southern Hemisphere: An update. Italian Journalof Mycology, 46, 21–36. https://doi.org/10.6092/issn.2531-7342/6794
  • Hall, J. S., Harris, D. J., Medjib, V., & Ashtona, P. M. S. (2003). The effects of selective logging on forest structure and tree species composition in a Central African forest: Implications for management of conservation areas. Forest Ecology and Management, 183(1–3), 249–264. https://doi.org/10.1016/S0378-1127(03)00107-5
  • Harith, N., Abdullah, N., & Sabaratnam, V. (2014). Cultivation of Flammulina velutipes mushroom using various agro residues as a fruiting substrate. Pesq. Agropec. Bras., Brasília, 49(3), 181–188. https://doi.org/10.1590/S0100-204X2014000300004
  • Hawksworth, D. L., & Lücking, R. (2017). Fungal diversity revisited: 2.2 to 3.8 million species. Microbiology Spectrum, 5(4), 1–17. https://doi.org/10.1128/microbiolspec.FUNK-0052-2016
  • Hazarika, D. J., Gautom, T., Parveen, A., Goswami, G., Barooah, M., Modi, M. K., & Boro, R. C. (2020). Mechanism of interaction of an endofungal bacterium Serratia marcescens D1 with its host and non-host fungi. PLoS ONE, 15(4), 1–19. https://doi.org/10.1371/journal.pone.0224051
  • Herawati, E., Arung, E. T., & Amirta, R. (2016). Domestication and nutrient analysis of schizopyllumcommune,alternative natural food sources in East Kalimantan agriculture and agricultural science procedia 9: 291–296 International Conference on Food, Agriculture and Natural Resources. Elsevier B.V. publishers.
  • Hibbett, D. S., Gilbert, L., & Donoghue, M. J. (2000). Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature, 407(6803), 506–508. https://doi.org/10.1038/35035065
  • Higgins, C., Margot, H., Warnquist, S., Obeysekare, E., & Mehta, K. (2017). Mushroom cultivation in the developing world: A comparison of cultivation technologies. IEE Global Humanitarian Technology Conference (GHTC): 1–7. San Jose, CA, USA: IEEE
  • Hsu, C. M., Hameed, K., Cotter, V. T., & Liao, H. L. (2018). Isolation of mother cultures and preparation of spawn for oyster mushroom cultivation. http://edis.ifas.ufl.edu. Accessed 11 November 2021
  • Joseph, T. P., Chanda, W., Padhiar, A. A., Batool, S., LiQun, S., Zhong, M., & Huang, M. (2018). A preclinical evaluation of the antitumor activities of edible and medicinal mushrooms: A mol. insight. Integrative Cancer Therapies, 17(2), 200–209. https://doi.org/10.1177/1534735417736861
  • Jurak, E., Punt, A. M., Arts, W., Kabel, M. A., & Gruppen, H. (2015). Fate of carbohydrates and lignin during composting and mycelium growth of Agaricus bisporus on wheat straw based compost. PLoS One, 10(10), e0138909. https://doi.org/10.1371/journal.pone.0138909
  • Kabel, M. A., Jurak, E., Mäkelä, M. R., & de Vries, R. P. (2017). Occurrence and function of enzymes for lignocellulose degradation in commercial Agaricus bisporus cultivation. Applied Microbiology and Biotechnology, 101(11), 4363–4369. https://doi.org/10.1007/s00253-017-8294-5
  • Kavi, R. K., Bugyei, K. A., Obeng-Koranteng, G., & Folitse, B. Y. (2018). Assessing sources of information for urban mushroom growers in Accra, Ghana. Journal of Agriculture and Food Information, 19(2), 176–191. https://doi.org/10.1080/10496505.2017.1361328
  • Kazige, O. K., Chuma, G. B., Lusambya, A. S., Mondo, J. M., Balezi, A. Z., Mapatano, S., & Mushagalusa, G. N. (2022). Valorizing staple crop residues through mushroom production to improve food security in eastern Democratic Republic Of Congo. Journal of Agricultural Food Research, 8(2022), 100285. https://doi.org/10.1016/j.jafr.2022.100285
  • Kertesz, M. A., & Thai, M. (2018). Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms. Applied Microbiology and Biotechnology, 102(4), 1639–1650. https://doi.org/10.1007/s00253-018-8777-z
  • Khalid, S., & Keller, N. P. (2021). Chemical signals driving bacterial–fungal interactions. Environmental Microbiology, 23(3), 1334–1347. https://doi.org/10.1111/1462-2920.15410
  • Khare, K. B., Khonga, E. B., Jongman, M., & Leteane, M. (2015). Economic profitability of oyster mushroom production in Botswana. Mushroom Research, 24(1), 49–55.
  • Kinge, T. R., Nji, T. M., Ndam, L. M., & Mih, A. M. (2014). Mushroom research, production and marketing in Cameroon: A review. Issues in Biol. Sc. Pharm. Res, 2(7), 069–074. http://www.journalissues.org/IBSPR/
  • Kortei, N. K., Odamtten, G. T., Obodai, M., Wiafe-Kwagyan, M., & Mensah, D. L. N. (2018). Correlations of cap diameter (pileus width), stipe length and biological efficiency of Pleurotus ostreatus(Ex.Fr.) Kummer cultivated on gamma-irradiated and steam-sterilized composted sawdust as an index of quality for pricing. Journal of Agriculture & Food Security, 7(35), 1–8. https://doi.org/10.1186/s40066-018-0185-1
  • Koutrotsios, G., Danezis, G., Georgiou, C., & Zervakis, G. I. (2020). Elemental content in Pleurotus ostreatus and Cyclocybe cylindracea mushrooms: Correlations with concentrations in cultivation substrates and effects on the production process. Molecules, 25(9), 2179. https://doi.org/10.3390/molecules25092179
  • Kropp, B. R., & Fortin, J. A. (1988). The incompatibility system and relative ectomycorrhizal performance of monokaryons and reconstituted dikaryons of Laccaria bicolor. Canadian Journal of Botany, 66(2), 289–394. https://doi.org/10.1139/b88-047
  • Kuga-Uetake, Y., Purich, M., Massicotte, H. B., & Peterson, R. L. (2004). Host microtubules in the Hartig net region of ectomycorrhizas, ectendomycorrhizas, and monotropoid mycorrhizas. Canadian Journal of Botany, 82(7), 938–946. https://doi.org/10.1139/b04-085
  • Kumla, J., Bussaban, B., Suwannarach, N., Lumyong, S., & Danell, E. (2012). Basidiome formation of an edible wild, putatively ectomycorrhizal fungus, Phlebopus portentosus without host plant. Mycologia, 104(3), 597–603. https://doi.org/10.3852/11-074
  • Liu, S., Zhang, W., & Kuang, Y. (2018). Production of stalk spawn of an edible mushroom (Pleurotus ostreatus) in liquid culture as a suitable substitute for stick spawn in mushroom cultivation. Scientia Horticulturae, 240(2018), 572–577. https://doi.org/10.1016/j.scienta.2018.06.068
  • Lofgren, L., Nguyen, N. H., & Kennedy, P. G. (2018). Ectomycorrhizal host specificity in a changing world: Can legacy effects explain anomalous current associations? New Phytologist, 220(4), 1273–1284. https://doi.org/10.1111/nph.15008
  • Lofgren, L. A., Nguyen, N. H., Vilgalys, R., Ruytinx, J., Liao, H.-L., Branco, S., Kuo, A., La Butti, K., Lipzen, A., Andreopoulos, W., Pangilinan, J., Riley, R., Hundley, H., Na, H., Barry, K., Grigoriev, I. V., Stajich, J. E., & Kennedy, P. G. (2021). Comparative genomics reveals dynamic genome evolution in host specialist ectomycorrhizal fungi. New Phytologist, 230(2), 774–792. https://doi.org/10.1111/nph.17160
  • Looney, B., Miyauchi, S., Morin, E., Drula, E., Courty, P. E., Kohler, A., Lindquist, E., Kuo, A., LaButti, K., Pangilinan, J., Lipzen, A., Riley, R., Andreopoulos, W., He, G., Johnson, J., Barry, K. W., Grigoriev, I. V., Nagy, L. G., Hibbett, D., … Martin, F. M. (2021). Evolutionary priming and transition to the ectomycorrhizal habit in an iconic lineage of mushroom-forming fungi: Is preadaptation a requirement? bioRxiv Preprint. version posted February 24, 2021 https://doi.org/10.1101/2021.02.23.432530
  • Mabuza, M. L., Ortmann, G. F., & Wale, E. Z. (2012). Collective action in commercial mushroom production: The role of social capital in the management of informal farmer groups in Swaziland. Selected paper for presentation at the International Association of Agricultural Economists (IAAE) Triennial Conference, Foz do Iquaçu, Brazil, 18-24 August, 2012. IAAE.
  • Magae, Y. (1999). Saponin stimulates fruiting of the edible basidiomycete Pleurotus ostreatus. Bioscience, Biotechnology, and Biochemistry, 63(10), 1840–1842. https://doi.org/10.1271/bbb.63.1840
  • Magingo, F. S., Oriyo, N. M., Kivaisi, A. K., & Danell, E. (2004). Cultivation of Oudemansiella tanzanica nom. prov. on agricultural solid wastes in Tanzania. Mycologia, 96(2), 197–204. https://doi.org/10.1080/15572536.2005.11832967
  • Mahadevan, K., & Shanmugasundaram, K. (2018). Comparative effect of different culture media on mycelial growth performance of Pleurotussapidus. Journal of Pharmacognosy and Phytochemistry, 7(4), 874–878. https://www.phytojournal.com/archives/2018/vol7issue4/PartO/7-3-733-395.pdf
  • Marshall, E., & Nair, N. G. (Eds.) (2009). (Tan) Make money by growing mushrooms: FAO Diversification booklet number 7. Rural Infrastructure and Agro-Industries Division Food and Agriculture Organization of the United Nations Rome 2009. Rome, Italy: FAO.
  • Martínez-Peña, F., De-miguel, S., Pukkala, T., Bonet, J. A., Ortega-Martínez, P., Aldea, J., & de Aragón, J. M. (2012). Yield models for ectomycorrhizal mushrooms in Pinus sylvestris forests with special focus on Boletus edulis and Lactarius group deliciosus. Forest Ecology and Management, 282, 63–69. https://doi.org/10.1016/j.foreco.2012.06.034
  • Marupakula, S., Mahmood, S., Jernberg, J., Nallanchakravarthula, S., Fahad, Z. A., & Finlay, R. D. (2017). Bacterial microbiomes of individual ectomycorrhizal Pinus sylvestris roots are shaped by soil horizon and differentially sensitive to nitrogen addition. Environmental Microbiology, 19(11), 4736–4753. https://doi.org/10.1111/1462-2920.13939
  • Masevhe, M. R., Soundy, P., & Taylor, N. J. (2016). Alternative substrates for cultivating oyster mushrooms (Pleurotus ostreatus). South African Journal of Plant and Soil, 33(2), 97–103. https://doi.org/10.1080/02571862.2015.1079932
  • Matjuðkova, N., Okmane, L., Zaïâ, D., Rozenfelde, L., Puíe, M., Krûma, I., Vederòikovs, N., & Rapoport, A. (2018). Effect of lignin-containing media on growth of medicinal mushroom Lentinulaedodes. Proceedings of the Latvian Academy of Sciences, Section B, 71(1/2 (706/707)), 38–42. https://doi.org/10.1515/prolas-2017-0007
  • Mediavilla, O., Olaizola, J., Santos-del-Blanco, L., Oria-de-rueda, J. A., & Martín-Pinto, P. (2015). Mycorrhization between Cistus ladanifer L. and Boletus edulis Bull is enhanced by the mycorrhiza helper bacteria Pseudomonas fluorescensMigula. Mycorrhiza, 26(2), 1–8. https://doi.org/10.1007/s00572-015-0657-0
  • Mei, Y., Liu, C.-Y., Li, S.-H., Guerin-Laguette, A., Xiao, Y.-J., Tang, P., Wan, S.-P., Bonito, G., & Wang, Y. (2021). Phlebopus roseus, a new edible bolete from China, is associated with insects and plants. Mycologia, 113(1), 33–42. https://doi.org/10.1080/00275514.2020.1816781
  • Miller, O. K. (2003). The Gomphidiaceae revisited: A worldwide perspective. Mycologia, 95(1), 176–183. https://doi.org/10.1080/15572536.2004.11833147
  • Mlambo, A., & Maphosa, M. (2017). Miombo woodland mushrooms of commercial food value: A survey of central districts of Zimbabwe. Journal of Food Security, 5(2), 51–57. https://doi.org/10.12691/jfs-5-2-5
  • Mlambo, A., & Maphosa, M. (2021). Ectomycorrhizal mushroom yield association with woody species and leaf litter in a miombo woodland, central Zimbabwe. African Journal of Ecology and Ecosystems, 8(8), 1–10.
  • Morte, A., Kagan-Zur, V., Navarro-Ródenas, A., & Sitrit, Y. (2021). Cultivation of desert truffles—A crop suitable for arid and semi-arid zones. Agronomy, 11(8), 1462. https://doi.org/10.3390/agronomy11081462
  • Mshandete, A. M., & Cuff, J. (2008). Cultivation of three types of indigenous wild edible mushrooms: Coprinus cinereus, Pleurotus flabellatus and Volvariella volvocea on composted sisal decortications residue in Tanzania. African Journal of Biotechnology, 7(24), 4551–4562. http://www.academicjournals.org/AJB
  • Muchena, F. B., Pisa, C., Mutetwa, M., Govera, C., & Ngezimana, W. (2021). Effect of spent button mushroom substrate on yield and quality of Baby Spinach (Spinacia oleracea). International Journal of Agronomy, 2021, 1–9. https://doi.org/10.1155/2021/6671647
  • Muswati, C., Simango, K., Tapfumaneyi, L., Mutetwa, M., & Ngezimana, W. (2021). The effects of different substrate combinations on growth and yield of oyster mushroom (Pleurotus ostreatus).International Journal of Agronomy, 2021, 1–10. Article ID 9962285. https://doi.org/10.1155/2021/9962285
  • Mwinyi, W. Y., Héritier, M. K., & Hippolyte, N. S. W. M. (2022). Spawn production and cultivation of two local edible fungal species in Kisangani (DRC) (case of Pleurotus tuber-regium and Lentinus squarrosulus). Journal of Microbiology Experiments, 10(1), 45‒48. https://doi.org/10.15406/jmen.2022.10.00351
  • Nannipieri, P., Giagnoni, L., Landi, L., & Renella, G. (2011). Role of phosphatase enzymes in soil. In E. Bunemann, A. Oberson, & E. Frossard (Eds.), Phosphorus in Action. Soil Biology 26 (pp. 215–243). Springer.
  • Naranjo-Ortiz, M. A., & Gabaldón, T. (2019). Fungal evolution: Diversity, taxonomy and phylogeny of the Fungi. Biology Reviews, 94(6), 2101–2137. https://doi.org/10.1111/brv.12550
  • Ndem, J. U., & Oku, M. O. 2016. Mushroom production for food security in Nigeria. Food Science Quality Management, 48 2225-0557, 44–50. www.iiste.org 2224-6088 (Paper)
  • Ngétich, O. K., Nyamangyoku, O. I., Rono, J. J., Niyokuri, A. N., & Izamuhaye, J. C. (2013). Relative performance of oyster mushroom (Pleurotus Florida) on agro-industrial and agricultural substrate. International Journal of Agronomy and Plant Production, 4(1), 109–116. https://www.cabdirect.org/cabdirect/abstract/20133059495
  • Noble, R., & Gaze, R. H. (1996). Preparation of mushroom (Agaricus bisporus) composts in controlled environments: Factors influencing compost bulk density and productivity. International-Biodeterioration-and-Biodegradation, 37(1–2), 93–100. https://doi.org/10.1016/0964-8305(95)00072-0
  • Noble, R., Hobbs, P. J., Mead, A., & Dobrovin-Pennington, A. (2002). Influence of straw types and nitrogen sources on mushroom composting emissions and compost productivity. Journal of Industrial Microbiology & Biotechnology, 29(3), 99–110. https://doi.org/10.1038/sj.jim.7000292
  • Norvell, L. (1995). Loving the chanterelle to death? The 10-year Oregon chanterelle project. McIIvanea, 12(1), 5–25. https://www.researchgate.net/publication/255719162_Loving_the_chanterelle_to_death_The_ten-year_Oregon_Chanterelle_Project
  • Nouhra, E., Urcelay, C., Becerra, A., & Dominguez, L. (2008). Mycorrhizal status of Phlebopus bruchii (Boletaceae): Does it form ectomycorrhizas with Fagara coco (Rutaceae)? Symbiosis, 46, 113–120. https://www.researchgate.net/publication/260258789_Mycorrhizal_status_of_Phlebopus_bruchii_Boletaceae_Does_it_form_ectomycorrhizas_with_Fagara_coco_Rutaceae
  • Nteziryayo, V., Tibuhwa, D. D., Kiyuku, P., Muvunyi, R., & Masharabu, T. (2019). Characterization and domestication of wild edible mushrooms from selected indigenous forests in Burundi. Tanzania Journal of Science, 45(3), 417–430. https://www.ajol.info/index.php/tjs/article/view/191719/180876
  • Obase, K. (2020). Effects of bacterial strains isolated from the ectomycorrhizal roots of Laccaria parva on sporocarp production by the fungus in vitro. Mycoscience, 61(1), 9–15. https://doi.org/10.1016/j.myc.2019.10.002
  • Oh, S.-Y., & Lim, Y. W. (2018). Effect of fairy ring bacteria on the growth of Tricholoma matsutake in vitro culture. Mycorrhiza, 28(5–6), 411–419. https://doi.org/10.1007/s00572-018-0828-x
  • Ohta, A. (1994). Production of fruit bodies of a mycorrhizal fungus, Lyophyllum shimeji in pure culture. Mycoscience, 35(2), 147–151. https://doi.org/10.1007/BF02318492
  • Onwubuya, E. A., Ajani, E. N., Dike, C., & Uzokwe, U. N. (2015). Popularization of mushroom production technologies among small-scale farmers in Abia State, Nigeria. International Journal of Research in Agriculture and Forestry, 2(1), 1–7. https://www.ijraf.org/pdf/v2-i1/1.pdf
  • Osarenkhoe, O. O., John, O. A., & Theophilus, D. A. (2014). Ethnomycological Conspectus of West African Mushrooms: An Awareness Document. Advances in Microbiology, 4(1), 39–54. https://doi.org/10.4236/aim.2014.41008
  • Pavlík, M., & Byandusya, P. (2016). The effectiveness of the oyster mushroom growing on the locally available substrates in rural regions of Africa and Europe. Science and Cultivation of Edible Fungi, Baars & Sonnenberg (pp.1-6). International Society for Mushroom Science. https://www.researchgate.net/publication/305639301
  • Payen, T., Murat, C., & Bonito, G. (2014). Truffle phylogenomics: New insights into truffle evolution and truffle life cycle. In F. Martin (Ed.), Genomics of plant-related fungi. Advances in Botanical Research (pp. 211–234). Elsevier Academic Press.
  • Peksen, A., Kibar, B., & Yakupoglu, G. (2013). Favourable culture conditions for mycelial growth of Hydnumrepandum, a medicinal mushroom. African Journal of Traditional & Complimentary Altitude Medicine, 10(6), 431–434. https://doi.org/10.4314/ajtcam.v10i6.4
  • Pérez-Moreno, J., Guerin-Laguette, A., Rinaldi, A. C., Yu, F., Verbeken, A., Hernández-Santiago, F., & Martínez-Reyes, M. (2021). Edible mycorrhizal fungi of the world: What is their role in forest sustainability, food security, biocultural conservation and climate change? Plants People Planet, 00, 1–20. https://doi.org/10.1002/ppp3.10199
  • Piazza, S. D., Benvenuti, M., Damonte, G., Cecchi, G., Mariotti, M. G., & Zotti, M. (2021). Fungi and circular economy: Pleurotus ostreatus grown on a substrate with agricultural waste of Lavender, and its promising biochemical profile. Recycling, 6(2), 1–12. https://doi.org/10.3390/recycling6020040
  • Pilz, D., & Molina, R. (2001). Commercial harvests of edible mushrooms from the forests of the Pacific Northwest United States: Issues, management, and monitoring for sustainability. Forest Ecology & Management, 5593, 1–14. https://doi.org/10.1016/S0378-1127(01)00543-6
  • Poonga, P. R. J., & Kaviyarasan, V. (2015). Basidiome Initiation in medicinal mushroom Hypsizygus ulmarius by free living nitrogen fixing Azotobacter sp. International Journal of Pharmaceutical Sciences Review and Research, 31(15), 85–88. https://www.researchgate.net/publication/275230236
  • Production of fruit bodies of a mycorrhizal fungus, Lyophyllum shimeji in pure culture. 4, 39–54. http://dx.doi.org/10.4236/aim.2014.41008
  • Qin, J., & Feng, B. (2022). Life cycle and phylogeography of true truffles. Genes, 13(145), 1–10. https://doi.org/10.3390/genes13010145
  • Rainey, P. B., Cole, A. L. J., Fermor, T. R., & Wood, D. A. (1990). A model system for examining involvement of bacteria in basidiome initiation of Agaricus bisporus. Mycological Research, 94(2), 191–195. https://doi.org/10.1016/S0953-7562(09)80612-6
  • Rashad, F. M., El Kattan, M. H., Fathy, H. M., Abd El-Fattah, D. A., El Tohamy, M., & Farahat, A. A. (2019). Recycling of agro-wastes for Ganoderma lucidum mushroom production and Ganoderma post mushroom substrate as soil amendment. Waste Management, 88, 147–159. https://doi.org/10.1016/j.wasman.2019.03.040
  • Rathod, M. G., Gadade, R. B., Thakur, G. M., & Pathak, A. P. 2021. Oyster mushroom: Cultivation, bioactive significance and commercial status. Frontiers in Life Sciences 2. https://www.bhumipublishing.com/book/
  • Rigamonte, T. A., Pylro, V. S., & Duarte, G. F. (2019). The role of mycorrhization helper bacteria in the establishment and action of ectomycorrhizae associations. Brazilian Journal of Microbiology, 41(4), 832–840. https://doi.org/10.1590/S1517-83822010000400002
  • Riquelme, M., Aguirre, J., Bartnicki-García, S., Braus, G. H., Feldbrügge, M., Fleig, U., Hansberg, W., Herrera-Estrella, A., Kämper, J., Kück, U., Mouriño-Pérez, R. R., Takeshita, N., & Fischer, R. (2018). Fungal morphogenesis, from the polarized growth of hyphae to complex reproduction and infection structures. Microbiology & Molecular Biology Reviews, 82(2), 1–47. https://doi.org/10.1128/MMBR.00068-17
  • Rizzo, G., Goggi, S., Giampieri, F., & Baroni, L. (2021). A review of mushrooms in human nutrition and health. Trends in Food Science &technology???, 117, 60–73. https://doi.org/10.1016/j.tifs.2020.12.025
  • Royse, D. J., Baars, J., & Tan, Q. (2017). Current overview of mushroom production in the world. In C. Z. Diego & A. Pardo-Giménez (Eds.), Edible and Medicinal Mushrooms: Technology and Applications (pp. 5–13). John Wiley & Sons Ltd.
  • Royse, D. J., & Beelman, R. B. (2016). Six steps to mushroom farming. https://extension.psu.edu/six-steps-to-mushroom-farming Accessed 13 November 2021
  • Salo, K., Domisch, T., & Kouki, J. (2019). Forest wildfire and 12 years of post-disturbance succession of saprotrophic macrofungi (Basidiomycota, Ascomycota). Forest Ecology and Management, 451(2019), 1–29. https://doi.org/10.1016/j.foreco.2019.117454
  • Sambyal, K., & Singh, R. V. (2021). A comprehensive review on Morchella importuna: Cultivation aspects, phytochemistry, and other significant applications. Folia Microbiology, 66(2), 147–157. https://doi.org/10.1007/s12223-020-00849-7
  • Sessitsch, A., Hardoim, P., Döring, J., Weilharter, A., Krause, A., Woyke, T., & Reinhold-Hurek, B. (2012). Functional Characteristics of an Endophyte Community Colonizing Rice Roots as Revealed by Metagenomic Analysis. Molecular & Plant-Microbe Interactions, 25(1), 28–36. https://doi.org/10.1094/MPMI-08-11-0204
  • Sharma, M., & Sharma, R. (2016). Drugs and drug intermediates from fungi: Striving for greener processes. Critical Reviews in Microbiology, 42(2), 322–338. https://doi.org/10.3109/1040841X.2014.947240
  • Shungchang, J., Mark, M., & Qi, T. (2019). The 86th Anniversary of the Invention of Grain Spawn:Witnessing the modernization of commercial cultivation of the mushroom Agaricus bisporus. Acta Edulis Fungi, 26(1), 77–98. https://www.cabdirect.org/cabdirect/abstract/20193278412
  • Smith, G. R., Finlay, R. D., Stenlid, J., Vasaitis, R., & Menkis, A. (2017). Growing evidence for facultative biotrophy in saprotrophic fungi: Data from microcosm tests with 201 species of wood-decay basidiomycetes. New Phytologist, 215(2), 747–755. https://doi.org/10.1111/nph.14551
  • Stobbe, U., Egli, S., Tegel, W., Peter, M., Sproll, L., & Büntgen, U. (2013). Potential and limitations of Burgundy truffle cultivation. Applied Microbiology and Biotechnology, 97(12), 5215–5224. https://doi.org/10.1007/s00253-013-4956-0
  • Straatsma, G., Gerrits, J. P. G., Thissen, J. T. N. M., Amsing, J. G. M., Loeffen, H., & van Griensven, L. J. L. D. (2000). Adjustment of the composting process for mushroom cultivation based on initial substrate composition. Bioresearch Technology, 72(1), 67–74. https://doi.org/10.1016/S0960-8524(99)00088-7
  • Sugimoto, H. H., Barbosa, A. M., Dekker, R. F. K., & Castro-Gomez, R. J. (2001). Veratryl alcohol stimulates fruiting body formation in the oyster mushroom, Pleurotus ostreatus. FEMS Microbiology Letters, 194(2), 235–238. https://doi.org/10.1111/j.1574-6968.2001.tb09475.x
  • Tedersoo, L., May, T. W., & Smith, M. E. (2010). Ectomycorrhizal lifestyle in fungi: Global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza, 20(20104), 217–263. https://doi.org/10.1007/s00572-009-0274-x
  • Thawthong, A., Karunarathna, S. C., Thongklang, N., Chukeatirote, E., Kakumyan, P., Chamyuang, S., Rizal, L. M., Mortimer, P. E., Xu, J., Callac, P., & Hyde, K. D. (2014). Discovering and domesticating wild tropical cultivatable mushrooms. Chiang Mai Journal of Science, 41(4), 731–764. https://www.researchgate.net/publication/266022771_Discovering_and_Domesticating_Wild_Tropical_Cultivatable_Mushrooms
  • Thiribhuvanamala, G., Krishnamoorthy, A. S., Kavitha, C., Shwet, K., Anil, K., & Sharma, V. P. (2021). Strategic approaches for outdoor cultivation of paddy straw mushroom (Volvariella volvacea) as intercrop under different cropping systems. Madras Agricultural Journal, 108, 71–78. https://doi.org/10.29321/MAJ.10.000486
  • Thongklang, N., & Luangharn, T. (2016). Testing agricultural wastes for the production of Pleurotus ostreatus. Mycosphere, 7(6), 766–772. https://doi.org/10.5943/mycosphere/7/6/6
  • Thuc, L. V., Corales, R. G., Sajor, J. T., Truc, N. T. T., Hien, P. H., Ramos, R. E., Bautista, E., Tado, C. J. M., Ompad, V., Son, D. T., & Hung, N. V. (2020). Rice-straw mushroom production. M. Gummert, N. Van Hung, P. Chivenge, & B. Douthwaite Eds., Sustainable rice straw management, Springer Open (pp 93-109). https://doi.org/10.1007/978-3-030-32373-8
  • Treseder, K., Torn, M., & Masiello, C. (2006). An ecosystem-scale radiocarbon tracer to test use of litter carbon by ectomycorrhizal fungi. Soil Biology & Biochemistry, 38(5), 1077–1082. https://doi.org/10.1016/j.soilbio.2005.09.006
  • Upadhyay, R. C., & Hofrichter, M. (1993). Effect of phenol on the mycelia growth and fructification in some of basidiomycetous fungi. Journal of Basic Microbiology, 33(5), 343–347. https://doi.org/10.1002/jobm.3620330512
  • Vaario, L.-M., & Matsushita, N. (2021). Conservation of edible ectomycorrhizal mushrooms: Understanding of the ECM fungi mediated carbon and nitrogen movement within forest ecosystems. book. T. Ohyama & K. Inubushi Eds., Nitrogen in Agriculture - Physiological, Agricultural and Ecological Aspects (pp. 95399). Intechopen. https://doi.org/10.5772/intechopen.95399
  • van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A., & Sanders, I. R. (2014). Mycorrhizal ecology and evolution: The past, the present and the future Tansley review. New Phytologist, 205(4), 1406–1423. https://doi.org/10.1111/nph.13288
  • Veronina, E., & Sidorova, I. (2017). Rhizosphere, mycorrhizosphere and hyphosphere as unique niches of soil – Inhabiting bacteria and micromycetes. In H. B. Singh, B. K. Sarma, & C. Keswani (Eds.), Advances in PGPR Research (pp. 165–186). CABI.
  • Vidic, I., Berne, S., Drobne, D., Macӗk, P., Frane, Z. R., Turk, T., Strus, J., & Sepcic, K. (2005). Temporal and spatial expression of ostreolysin during development of the oyster mushroom (Pleurotus ostreatus). Mycological Research, 109(3), 377–382. https://doi.org/10.1017/S0953756204002187
  • Wallis, I. R., Claridge, A. W., & Trappe, J. M. (2012). Nitrogen content, amino acid composition and digestibility of fungi from a nutritional perspective in animal mycophagy. Fungal Biology, 116(5), 590–602. https://doi.org/10.1016/j.funbio.2012.02.007
  • Wang, D., Zhang, J. L., Wang, Y., Zambonelli, A., Hall, I. R., & Xiong, W.-P. (2021). The cultivation of Lactarius with edible mushrooms. Italian Journal of Mycology, 50(2021), 63–77. https://doi.org/10.6092/issn.2531-7342/12908
  • Weil, J. D., Cutter, C. N., Beelman, R. B., & LaBorde, L. F. (2013). Inactivation of human pathogens during phase II composting of manure-based mushroom growth substrate. Journal of Food Protection, 76(8), 1393–1400. https://doi.org/10.4315/0362-028X.JFP-12-508
  • Wendiro, D., Wacoo, A. P., & Wise, G. (2019). Identifying indigenous practices for cultivation of wild saprophytic mushrooms: Responding to the need for sustainable utilization of natural resources. Journal of Ethnobiology&Ethnomedicine, 15(64), 1–15. https://doi.org/10.1186/s13002-019-0342-z
  • Wolfe, B. E., Tulloss, R. E., & Pringle, A. (2012). The irreversible loss of a decomposition pathway marks the single origin of an ectomycorrhizal symbiosis. PLoSONE, 7(7), 1–9. https://doi.org/10.1371/journal.pone.0039597
  • Xiang, Q., Adil, B., Chen, Q., Gu, Y., Zeng, X., & Li, X. (2021). Shiitake mushroom (Lentinula edodes (Berk.) Sing. breeding in China. In J. M. Al-Khayri, S. M. Jain, & D. V. Johnson (Eds.), Advances in Plant Breeding Strategies: Vegetable Crops (pp. 443–476). Springer.
  • Xie, H., Zhao, J. W., Zhou, H. W., Ren, S. H., & Zhang, R. X. (2020). Secondary utilizations and perspectives of mined underground space. Tunnel and Underground Space Technology, 96(8), 1–14. https://doi.org/10.1016/j.tust.2019.103129
  • Yaeger, W., Jawed, M., Tauman, D., Ho, P., Ali, A., Gomanie, N. N., & Mehta, K. (2022). Modular methods for oyster mushroom cultivation in low-resource settings. 2022 IEEE Global Humanitarian Technology Conference (GHTC). Santa Clara, CA, USA: IEEE.
  • Yagame, T., & Maekawa, N. (2019). Ectomycorrhiza synthesis and basidiome formation of an orchid symbiont of the genus Thelephora on Quercus serrata. Mycoscience, 60(6), 343–350. https://doi.org/10.1016/j.myc.2019.08.001
  • Yamada, A., Ogura, T., & Ohmasa, M. (2001). Cultivation of mushrooms of edible ectomycorrhizal fungi associated with Pinus densiflora by in vitro mycorrhizal synthesis I. Primordium and basidiocarp formation in open-pot culture. Mycorrhiza, 11(2), 59–66. https://doi.org/10.1007/s005720000092
  • Yamanaka, T., Yamada, A., & Furukawa, H. (2020). Advances in the cultivation of the highly-prized ectomycorrhizal mushroom Tricholoma matsutake. Mycoscience, access–090821. https://doi.org/10.1016/j.myc.2020.01.001
  • Yassine, M. W., Héritier, M. K., & Hippolyte, N. S. W. M. (2022). Spawn production and cultivation of two local edible fungal species in Kisangani (DRC) (Case of Pleurotus tuber-regium and Lentinus squarrosulus). Journal of Microbiology Experimentation, 10(1), 45–48. https://doi.org/10.15406/jmen.2022.10.00351
  • Yongabi, K. (2014). Current developments in mushroom biotechnology in Sub-Saharan Africa. WSMBMP Bulletin 11. July 31, 2014. https://www.researchgate.net/publication/296651945
  • Yun, W., & Hall, I. R. (2004). Edible ectomycorrhizal mushrooms: Challenges and achievements. Canadian Journal of Botany, 82(8), 1063–1073. https://doi.org/10.1139/b04-051
  • Zhang, L., Fan, J., Ding, X., He, X., Zhang, F., & Feng, G. (2014a). Hyphosphere interactions between an arbuscularmycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biology & Biochemistry, 1–7. https://doi.org/10.1016/j.soilbio.2014.03.004
  • Zhang, Y., Geng, W., Shen, Y., Wang, Y., & Dai, Y.-C. (2014b). Edible mushroom cultivation for food security and rural development in China: Bio-innovation, technological dissemination and marketing. Sustainability, 6(5), 2961–2973. https://doi.org/10.3390/su6052961
  • Zhang, X., Li, L., Kesner, L., Aurélie, C., & Robert, M. (2021). Chemical host-seeking cues of entomopathogenic nematodes. Current Opinion in Insect Science, 44, 72–81. https://doi.org/10.1016/j.cois.2021.03.011
  • Zhou, G., & Parawira, W. (2021). The effect of different substrates found in Zimbabwe on the growth and yield of oyster mushroom. Pleurotus ostreatus.SAJEST, 5(2), 73–86. https://doi.org/10.4314/sajest.v5i2.39831
  • Zied, D. C., Vieira Junior, W. G., Soares, D. M. M., Stevani, C. V., Dias, E. S., Iossi, M. R., & Pardo-Giménez, A. (2021). Overview of four Agaricussubrufescens strains used in the last 15 years in Brazil and other countries and current potential materials for the future. Mycological Progress, 20(8), 953–966. https://doi.org/10.1007/s11557-021-01711-x