7,219
Views
5
CrossRef citations to date
0
Altmetric
ENTOMOLOGY

Entomopathogenic fungi and their relevance in sustainable agriculture: A review

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2180857 | Received 22 Oct 2022, Accepted 12 Feb 2023, Published online: 02 Mar 2023

References

  • Agrawal, Y., Khatri, I., Subramanian, S., & Shenoy, B. D. (2015). Genome sequence, comparative analysis, and evolutionary insights into chitinases of entomopathogenic fungus Hirsutella thompsonii. Genome Biology and Evolution, 7(3), 916–21. https://doi.org/10.1093/gbe/evv037
  • Aiuchi, D., Horie, S., Watanabe, T., Yamanaka, S., & Koike, M. (2011). Biological Control of Greenhouse Whitefly, Trialeurodes Vaporariorum by Entomopathogenic Fungus Lecanicillium Spp. Hybrid Strain in Greenhouse. Biological Control of Greenhouse Whitefly, Trialeurodes Vaporariorum by Entomopathogenic Fungus Lecanicillium Spp. Hybrid Strain in Greenhouse, 66, 255–258. https://www.cabdirect.org/cabdirect/abstract/20113280327
  • Akmal, M., Freed, S., Malik, M. N., & Gul, H. T. (2013). Efficacy of Beauveria bassiana (Deuteromycotina: Hypomycetes) against different aphid species under laboratory conditions. Pakistan Journal of Zoology, 45(1), 71–78. https://www.academia.edu/download/32275050/71-78__10__PJZ-963-12_22-11-12_Efficacy_of_Beauveria_bassiana__Deuteromyco_.pdf
  • AlAVO, T. B. (2015). The insect pathogenic fungus Verticillium lecanii (Zimm.) Viegas and its use for pests control: A review. Journal of Experimental Biology and Agricultural Sciences, 3(4), 337–345. https://doi.org/10.18006/2015.3(4).337.345
  • Ali, S., Huang, Z., & Ren, S. (2010). Production of cuticle degrading enzymes by Isaria fumosorosea and their evaluation as a biocontrol agent against diamondback moth. Journal of Pest Science, 83(4), 361–370. https://doi.org/10.1007/S10340-010-0305-6
  • Alizadeh, A., Khezri, M., & Saberi Riseh, R. (2007). Compatibility of Beauveria bassiana (Bals.) Vuill. With several pesticides. International Journal of Agriculture and Biology, 9(1), 31–34. http://www.fspublishers.org/published_papers/19773_.pdf
  • Altinok, H. H., Altinok, M. A., & Koca, A. S. (2019). Modes of action of entomopathogenic fungi. Current Trends in Natural Sciences, 8(16), 117–124. https://www.researchgate.net/profile/Abdurrahman-Koca-2/publication/338390298_Modes_of_Action_of_Entomopathogenic_Fungi/links/5e10f8a792851c8364b0c41f/Modes-of-Action-of-Entomopathogenic-Fungi.pdf
  • Avery, P. B., Wekesa, V. W., Hunter, W. B., Hall, D. G., McKenzie, C. L., Osborne, L. S., Powell, C. A., & Rogers, M. E. (2011). Effects of the fungus Isaria fumosorosea (Hypocreales: Cordycipitaceae) on reduced feeding and mortality of the Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae). Biocontrol Science and Technology, 21(9), 1065–1078. https://doi.org/10.1080/09583157.2011.596927
  • Aw, K. M. S., & Hue, S. M. (2017). Mode of infection of Metarhizium spp. Fungus and their potential as biological control agents. Journal of Fungi, 3(2), 30. Article 2. https://doi.org/10.3390/jof3020030
  • Azizoglu, U., Jouzani, G. S., Yilmaz, N., Baz, E., & Ozkok, D. (2020). Genetically modified entomopathogenic bacteria, recent developments, benefits and impacts: A review. Science of the Total Environment, 734, 139169. https://doi.org/10.1016/j.scitotenv.2020.139169
  • Baron, N. C., Rigobelo, E. C., & Zied, D. C. (2019). Filamentous fungi in biological control: Current status and future perspectives. Chilean Journal of Agricultural Research, 79(2), 307–315. https://doi.org/10.4067/S0718-58392019000200307
  • Baverstock, J., Elliot, S. L., Alderson, P. G., & Pell, J. K. (2005). Response of the entomopathogenic fungus Pandora neoaphidis to aphid-induced plant volatiles. Journal of Invertebrate Pathology, 89(2), 157–164. https://doi.org/10.1016/j.jip.2005.05.006
  • Becher, P. G., Jensen, R. E., Natsopoulou, M. E., Verschut, V., & De Fine Licht, H. H. (2018). Infection of Drosophila suzukii with the obligate insect-pathogenic fungus Entomophthora muscae. Journal of Pest Science, 91(2), 781–787. https://doi.org/10.1007/s10340-017-0915-3
  • Bergman, M. E., Davis, B., & Phillips, M. A. (2019). Medically useful plant terpenoids: Biosynthesis, occurrence, and mechanism of action. Molecules, 24(21), 3961. https://doi.org/10.3390/molecules24213961
  • Bidochka, M. J., & Small, C. L. (2005). Phylogeography of Metarhizium, an insect pathogenic fungus. In Vega, Fernando E., & Blackwell, M. (Eds.), Insect-Fungal Associations (pp. 28–49). Oxford University Press. https://www.cabdirect.org/cabdirect/abstract/20053125550
  • Bohara, J. R., Maharjan, S., Poudel, A., Karki, K., Bist, V., Regmi, R., Marahatta, S., & Kafle, L. (2018). Efficacy of different concentration of Metarhizium anisopliae (Metsch.) Sorokin against white grub at lab condition in Chitwan, Nepal. Journal of Pharmacognosy and Phytochemistry, 7(1S), 149–153. https://www.phytojournal.com/archives/2018/vol7issue1S/PartD/SP-7-1-291.pdf
  • Bojke, A., Tkaczuk, C., Stepnowski, P., & Golcebiowski, M. (2018). Comparison of volatile compounds released by entomopathogenic fungi. Microbiological Research, 214, 129–136. https://doi.org/10.1016/j.micres.2018.06.011
  • Bruck, D. J. (2009). Impact of fungicides on Metarhizium anisopliae in the rhizosphere, bulk soil and in vitro. BioControl, 54(4), 597–606. https://doi.org/10.1007/s10526-009-9213-1
  • Bugti, G. A., Na, C., Bin, W., & Feng, L. H. (2018). Control of plant sap-sucking insects using entomopathogenic fungi Isaria fumosorosea strain (Ifu13a). Plant Protection Science, 54(4), 258–264. https://doi.org/10.17221/118/2017-PPS
  • Chakrabarti, S., Liehl, P., Buchon, N., & Lemaitre, B. (2012). Infection-induced host translational blockage inhibits immune responses and epithelial renewal in the Drosophila Gut. Cell Host & Microbe, 12(1), 60–70. https://doi.org/10.1016/j.chom.2012.06.001
  • Chen, W., Han, Y., Liang, Z., & Jin, D. (2017). Lecanicillium araneogenum sp. Nov., a new araneogenous fungus. Phytotaxa, 305(1), 29–34. https://doi.org/10.11646/phytotaxa.305.1.4
  • Cherry, A. J., Banito, A., Djegui, D., & Lomer, C. (2004). Suppression of the stem-borer Sesamia calamistis (Lepidoptera; Noctuidae) in maize following seed dressing, topical application and stem injection with African isolates of Beauveria bassiana. International Journal of Pest Management, 50(1), 67–73. https://doi.org/10.1080/09670870310001637426
  • D’Alessandro, C. P., Padin, S., Urrutia, M. I., & López Lastra, C. C. (2011). Interaction of fungicides with the entomopathogenic fungus Isaria fumosorosea. Biocontrol Science and Technology, 21(2), 189–197. https://doi.org/10.1080/09583157.2010.536200
  • Dubovskiy, I. M., Whitten, M. M. A., Yaroslavtseva, O. N., Greig, C., Kryukov, V. Y., Grizanova, E. V., Mukherjee, K., Vilcinskas, A., Glupov, V. V., & Butt, T. M. (2013). Can insects develop resistance to insect pathogenic fungi? PLoS ONE, 8(4), e60248. https://doi.org/10.1371/journal.pone.0060248
  • El-Deeb, H. M., Lashin, S. M., & Arab, Y. A.-S. (2012). Reaction of some tomato cultivars to tomato leaf curl virus and evaluation of the endophytic colonisation with Beauveria bassiana on the disease incidence and its vector, Bemisia tabaci. Archives of Phytopathology and Plant Protection, 45(13), 1538–1545. https://doi.org/10.1080/03235408.2012.681246
  • Elliot, S. L., Blanford, S., & Thomas, M. B. (2002). Host–pathogen interactions in a varying environment: Temperature, behavioural fever and fitness. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1500), 1599–1607. https://doi.org/10.1098/rspb.2002.2067
  • Elliot, S. L., Sabelis, M. W., Janssen, A., van der Geest, L. P. S., Beerling, E. A. M., & Fransen, J. J. (2000). Can plants use entomopathogens as bodyguards? Ecology Letters, 3(3), 228–235. https://doi.org/10.1046/j.1461-0248.2000.00137.x
  • Faria, M., Hotchkiss, J. H., Hajek, A. E., & Wraight, S. P. (2010). Debilitation in conidia of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae and implication with respect to viability determinations and mycopesticide quality assessments. Journal of Invertebrate Pathology, 105(1), 74–83. https://doi.org/10.1016/j.jip.2010.05.011
  • Faria, M. R. D., & Wraight, S. P. (2007). Mycoinsecticides and Mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43(3), 237–256. https://doi.org/10.1016/j.biocontrol.2007.08.001
  • Gabarty, A., Salem, H. M., Fouda, M. A., Abas, A. A., & Ibrahim, A. A. (2014). Pathogencity induced by the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in Agrotis ipsilon (Hufn.). Journal of Radiation Research and Applied Sciences, 7(1), 95–100. https://doi.org/10.1016/j.jrras.2013.12.004
  • Gange, A. C., Koricheva, J., Currie, A. F., Jaber, L. R., & Vidal, S. (2019). Meta-analysis of the role of entomopathogenic and unspecialized fungal endophytes as plant bodyguards. New Phytologist, 223(4), 2002–2010. https://doi.org/10.1111/NPH.15859
  • Gao, T., Li, Y., Ding, M., Chai, Y., & Wang, Q. (2017). The phosphotransferase system gene ptsI in Bacillus cereus regulates expression of sodA2 and contributes to colonization of wheat roots. Research in Microbiology, 168(6), 524–535. https://doi.org/10.1016/j.resmic.2017.04.003
  • Georgiev, G., Mirchev, P., Rossnev, B., Petkov, P., Georgieva, M., Pilarska, D., Golemansky, V., Pilarski, P., & Hubenov, Z. (2013). Potential of Entomophaga maimaiga Humber, Shimazu and Soper (Entomophthorales) for suppressing Lymantria dispar (Linnaeus) outbreaks in Bulgaria. Comptes Rendus de L’Academie Bulgare Des Sciences, 66(7), 1025–1032. https://doi.org/10.7546/CR-2013-66-7-13101331-14
  • Goettel, M. S., Koike, M., Kim, J. J., Aiuchi, D., Shinya, R., & Brodeur, J. (2008). Potential of Lecanicillium spp. For management of insects, nematodes and plant diseases. Journal of Invertebrate Pathology, 98(3), 256–261. https://doi.org/10.1016/j.jip.2008.01.009
  • Greif, M. D., & Currah, R. S. (2007). Development and dehiscence of the cephalothecoid peridium in Aporothielavia leptoderma shows it belongs in Chaetomidium. Mycological Research, 111(Pt 1), 70–77. https://doi.org/10.1016/j.mycres.2006.09.016
  • Griffin, M. R. (2007). Beauveria bassiana, a cotton endophyte with biocontrol activity against seedling disease. University of Tennessee. https://trace.tennessee.edu/utk_graddiss/180
  • Gryganskyi, A. P., Mullens, B. A., Gajdeczka, M. T., Rehner, S. A., Vilgalys, R., & Hajek, A. E. (2017). Hijacked: Co-option of host behavior by entomophthoralean fungi. PLoS Pathogens, 13(5), e1006274. https://doi.org/10.1371/journal.ppat.1006274
  • Guerrero-Guerra, C., Reyes-Montes, M., del, R., Toriello, C., Hernández-Velázquez, V., Santiago-López, I., Mora-Palomino, L., Calderón-Segura, M. E., Fernández, S. D., & Calderón-Ezquerro, C. (2013). Study of the persistence and viability of Metarhizium acridum in Mexico’s agricultural area. Aerobiologia, 29(2), 249–261. https://doi.org/10.1007/s10453-012-9277-8
  • Gul, H. T., Saeed, S., & Khan, F. A. (2014). Entomopathogenic fungi as effective insect pest management tactic: A review. Applied Sciences and Business Economics, 1(1), 10–18. http://www.asbejournal.org/10-18.pdf
  • Hughes, W. O., Thomsen, L., Eilenberg, J., & Boomsma, J. J. (2004). Diversity of entomopathogenic fungi near leaf-cutting ant nests in a neotropical forest, with particular reference to Metarhizium anisopliae var. Anisopliae. Journal of Invertebrate Pathology, 85(1), 46–53. https://doi.org/10.1016/j.jip.2003.12.005
  • Humber, R. A. (2008). Evolution of entomopathogenicity in fungi. Journal of Invertebrate Pathology, 98(3), 262–266. https://doi.org/10.1016/j.jip.2008.02.017
  • Hussain, A., Tian, M.-Y., He, Y.-R., & Ahmed, S. (2009). Entomopathogenic fungi disturbed the larval growth and feeding performance of Ocinara varians (Lepidoptera: Bombycidae) larvae. Insect Science, 16(6), 511–517. https://doi.org/10.1111/j.1744-7917.2009.01272.x
  • Idrees, A., Qadir, Z. A., Akutse, K. S., Afzal, A., Hussain, M., Islam, W., Waqas, M. S., Bamisile, B. S., & Li, J. (2021). Effectiveness of entomopathogenic fungi on immature stages and feeding performance of Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) Larvae. Insects, 12(11), 1044. https://doi.org/10.3390/insects12111044
  • Islam, W., Adnan, M., Shabbir, A., Naveed, H., Abubakar, Y. S., Qasim, M., Tayyab, M., Noman, A., Nisar, M. S., & Khan, K. A. (2021). Insect-fungal-interactions: A detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Microbial Pathogenesis, 159, 105122. https://doi.org/10.1016/j.micpath.2021.105122
  • Jaber, L. R., & Araj, S.-E. (2018). Interactions among endophytic fungal entomopathogens (Ascomycota: Hypocreales), the green peach aphid Myzus persicae Sulzer (Homoptera: Aphididae), and the aphid endoparasitoid Aphidius colemani Viereck (Hymenoptera: Braconidae). Biological Control, 116, 53–61. https://doi.org/10.1016/j.biocontrol.2017.04.005
  • Jaber, L. R., & Ownley, B. H. (2018). Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biological Control, 116, 36–45. https://doi.org/10.1016/j.biocontrol.2017.01.018
  • Jankielsohn, A. (2018). The Importance of Insects in Agricultural Ecosystems. Advances in Entomology, 06(2), 62–73. https://doi.org/10.4236/ae.2018.62006
  • Jessica, J. J., Peng, T. L., Sajap, A. S., Lee, S. H., & Syazwan, S. A. (2018). Evaluation of the virulence of entomopathogenic fungus, Isaria fumosorosea isolates against subterranean termites Coptotermes spp. (Isoptera: Rhinotermitidae). Journal of Forestry Research 2018 30:1, 30(1), 213–218. https://doi.org/10.1007/S11676-018-0614-9
  • Jordan, C., Dos Santos, P. L., Oliveira, L. R., dos, S., Domingues, M. M., Gêa, B. C. C., Ribeiro, M. F., Mascarin, G. M., & Wilcken, C. F. (2021). Entomopathogenic fungi as the microbial frontline against the alien Eucalyptus pest Gonipterus platensis in Brazil. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-86638-9
  • Kaiser, D., Bacher, S., Mène-Saffrané, L., & Grabenweger, G. (2019). Efficiency of natural substances to protect Beauveria bassiana conidia from UV radiation. Pest Management Science, 75(2), 556–563. https://doi.org/10.1002/ps.5209
  • Kaya, H. K., & Vega, F. E. (2012). Scope and Basic Principles of Insect Pathology. Insect Pathology, (pp. 1–12); Elsevier. https://doi.org/10.1016/B978-0-12-384984-7.00001-4
  • Klass, J. I., Blanford, S., & Thomas, M. B. (2007). Development of a model for evaluating the effects of environmental temperature and thermal behaviour on biological control of locusts and grasshoppers using pathogens. Agricultural and Forest Entomology, 9(3), 189–199. https://doi.org/10.1111/j.1461-9563.2007.00335.x
  • Klieber, J., & Reineke, A. (2016). The entomopathogen B eauveria bassiana has epiphytic and endophytic activity against the tomato leaf miner T uta absoluta. Journal of Applied Entomology, 140(8), 580–589. https://doi.org/10.1111/jen.12287
  • Kushiyev, R., Tuncer, C., Erper, I., Ozdemir, I. O., & Saruhan, I. (2018). Efficacy of native entomopathogenic fungus, Isaria fumosorosea, against bark and ambrosia beetles, Anisandrus dispar Fabricius and Xylosandrus germanus Blandford (Coleoptera: Curculionidae: Scolytinae). Egyptian Journal of Biological Pest Control, 28(1), 1–6. https://doi.org/10.1186/s41938-018-0062-z
  • Li, Z., Alves, S. B., Roberts, D. W., Fan, M., Jr, I, D., Tang, J., Lopes, R. B., Faria, M., & Rangel, D. E. (2010). Biological control of insects in Brazil and China: History, current programs and reasons for their successes using entomopathogenic fungi. Biocontrol Science and Technology, 20(2), 117–136. https://doi.org/10.1080/09583150903431665
  • Li, W., & Sheng, C. F. (2007). Occurrence and distribution of entomophthoralean fungi infecting aphids in mainland China. Biocontrol Science and Technology, 17(4), 433–439. https://doi.org/10.1080/09583150701213802
  • Litwin, A., Nowak, M., & Rózalska, S. (2020). Entomopathogenic fungi: Unconventional applications. In Reviews in Environmental Science and Biotechnology (Vol. 19, No. 1, pp. 23–42). Springer. https://doi.org/10.1007/s11157-020-09525-1
  • Mascarin, G. M., & Jaronski, S. T. (2016). The production and uses of Beauveria bassiana as a microbial insecticide. World Journal of Microbiology & Biotechnology, 32(11), 1–26. https://doi.org/10.1007/s11274-016-2131-3
  • McKinnon, A. C., Glare, T. R., Ridgway, H. J., Mendoza-Mendoza, A., Holyoake, A., Godsoe, W. K., & Bufford, J. L. (2018). Detection of the entomopathogenic fungus Beauveria bassiana in the rhizosphere of wound-stressed Zea mays plants. Frontiers in Microbiology, 9, 1161. https://doi.org/10.3389/fmicb.2018.01161
  • Moran, P. J., Patt, J. M., Cabanillas, H. E., Adamczyk, J. L., Jackson, M. A., Dunlap, C. A., Hunter, W. B., & Avery, P. B. (2011). Localized Autoinoculation and Dissemination of Isaria fumosorosea for Control of the Asian Citrus Psyllid in South Texas. Subtropical Plant Science, 63, 23–35. https://pubag.nal.usda.gov/catalog/54210
  • Mwamburi, L. A. (2020). Chapter 37—Beauveria. In N. Amaresan, M. Senthil Kumar, K. Annapurna, K. Kumar, & A. Sankaranarayanan (Eds.), Beneficial Microbes in Agro-Ecology (pp. 727–748). Academic Press. https://doi.org/10.1016/B978-0-12-823414-3.00037-X
  • Niassy, S., Diarra, K., Ndiaye, S., & Niassy, A. (2011). Pathogenicity of local Metarhizium anisopliae var. Acridum strains on Locusta migratoria migratorioides Reiche and Farmaire and Zonocerus variegatus Linnaeus in Senegal. African Journal of Biotechnology, 10(1), 28–33. https://www.ajol.info/index.php/ajb/article/view/137916
  • Nicoletti, R., & Becchimanzi, A. (2020). Endophytism of Lecanicillium and Akanthomyces. Agriculture, 10(6). https://doi.org/10.3390/agriculture10060205
  • Nielsen, C., & Wraight, S. P. (2009). Exotic aphid control with pathogens. In Hajek, A.E., Glare, T.R., O’Callaghan, M. (Eds.), Use of Microbes for Control and Eradication of Invasive Arthropods (Vol. 6, pp. 93–113). Springer. https://doi.org/10.1007/978-1-4020-8560-4_6
  • Oliveira, D. G. P., De, Lopes, R. B., Rezende, J. M., & Delalibera, I. (2018). Increased tolerance of Beauveria bassiana and Metarhizium anisopliae conidia to high temperature provided by oil-based formulations. Journal of Invertebrate Pathology, 151, 151–157. https://doi.org/10.1016/j.jip.2017.11.012
  • Ortiz-Urquiza, A., & Keyhani, N. O. (2013). Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects, 4(3), 357–374. https://doi.org/10.3390/insects4030357
  • Ownley, B. H., Griffin, M. R., Klingeman, W. E., Gwinn, K. D., Moulton, J. K., & Pereira, R. M. (2008). Beauveria bassiana: Endophytic colonization and plant disease control. Journal of Invertebrate Pathology, 98(3), 267–270. https://doi.org/10.1016/J.JIP.2008.01.010
  • Posada, F., Aime, M. C., Peterson, S. W., Rehner, S. A., & Vega, F. E. (2007). Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycological Research, 111(6), 748–757. https://doi.org/10.1016/j.mycres.2007.03.006
  • Qasim, M., Islam, S. U., Islam, W., Noman, A., Khan, K. A., Hafeez, M., Hussain, D., Dash, C. K., Bamisile, B. S., & Akutse, K. S. (2020). Characterization of mycotoxins from entomopathogenic fungi (Cordyceps fumosorosea) and their toxic effects to the development of asian citrus psyllid reared on healthy and diseased citrus plants. Toxicon, 188, 39–47. https://doi.org/10.1016/j.toxicon.2020.10.012
  • Qasim, M., Ronliang, J., Islam, W., Ali, H., Khan, K. A., Dash, C. K., Jamal, Z. A., & Wang, L. (2021). Comparative pathogenicity of four entomopathogenic fungal species against nymphs and adults of citrus red mite on the citrus plantation. International Journal of Tropical Insect Science, 41(1), 737–749. https://doi.org/10.1007/s42690-020-00263-z
  • Qayyum, M. A., Saeed, S., Wakil, W., Nawaz, A., Iqbal, N., Yasin, M., Chaurdhry, M. A., Bashir, M. A., Ahmed, N., & Riaz, H. (2021). Diversity and correlation of entomopathogenic and associated fungi with soil factors. Journal of King Saud University-Science, 33(6), 101520. https://doi.org/10.1016/j.jksus.2021.101520
  • Quesada-Moraga, E., Ruiz-García, A., & Santiago-Alvarez, C. (2006). Laboratory evaluation of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae against puparia and adults of Ceratitis capitata (Diptera: Tephritidae). Journal of Economic Entomology, 99(6), 1955–1966. https://doi.org/10.1093/jee/99.6.1955
  • Quesada-Sojo, K. A., & Rivera-Méndez, W. (2016). Hirsutella as biological controller agent of mites and insects of agricultural importance. Revista Tecnología En Marcha, 29, 85–93. https://doi.org/10.18845/tm.v29i7.2709
  • Reddy, S. G. E. (2020). Lecanicillium spp. For the management of aphids, whiteflies, thrips, scales and mealy bugs. In Eduardo, R., & Ranz, R. (Eds.), Arthropods-Are They Beneficial for Mankind?. https://doi.org/10.5772/intechopen.94020
  • Reddy, N., Mahesh, G., Priya, M., Singh, R. U. S., & Manjunatha, L. (2020). Chapter 43—Hirsutella. In N. Amaresan, M. Senthil Kumar, K. Annapurna, K. Kumar, & A. Sankaranarayanan (Eds.), Beneficial Microbes in Agro-Ecology (pp. 817–831). Academic Press. https://doi.org/10.1016/B978-0-12-823414-3.00043-5
  • Resquín-Romero, G., Garrido-Jurado, I., Delso, C., Ríos-Moreno, A., & Quesada-Moraga, E. (2016). Transient endophytic colonizations of plants improve the outcome of foliar applications of mycoinsecticides against chewing insects. Journal of Invertebrate Pathology, 136, 23–31. https://doi.org/10.1016/j.jip.2016.03.003
  • Rijal, J. P., & Godfrey, L. D. (2018). Efficacy of selected bio-and reduced-risk insecticides on mint root borer, 2014. Arthropod Management Tests, 43(1), tsx134. https://doi.org/10.1093/amt/tsx134
  • Rivas, F., Nuñez, P., Jackson, T., & Altier, N. (2014). Effect of temperature and water activity on mycelia radial growth, conidial production and germination of Lecanicillium spp. Isolates and their virulence against Trialeurodes vaporariorum on tomato plants. BioControl, 59(1), 99–109. https://doi.org/10.1007/s10526-013-9542-y
  • Roberts, D. W., & St Leger, R. J. (2004). Metarhizium spp., cosmopolitan insect-pathogenic fungi: Mycological aspects. Advances in Applied Microbiology, 54(1), 1–70. https://doi.org/10.1016/S0065-2164(04)54001-7
  • Roy, H. E., Baverstock, J., & Chamberlain, K. (2005). Do aphids infected with entomopathogenic fungi continue to produce and respond to alarm pheromone? Biocontrol Science and Technology, 15(8), 859–866. https://www.tandfonline.com/doi/abs/10.1080/09583150500136170
  • Russo, M. L., Pelizza, S. A., Vianna, M. F., Allegrucci, N., Cabello, M. N., Toledo, A. V., Mourelos, C., & Scorsetti, A. C. (2019). Effect of endophytic entomopathogenic fungi on soybean Glycine max (L.) Merr. Growth and yield. Journal of King Saud University-Science, 31(4), 728–736. https://doi.org/10.1016/j.jksus.2018.04.008
  • Sahayaraj, K., & Namasivayam, S. K. R. (2008). Mass production of entomopathogenic fungi using agricultural products and by products. African Journal of Biotechnology, 7, 12. https://doi.org/10.5897/AJB07.778
  • Sandhu, S. S., Sharma, A. K., Beniwal, V., Goel, G., Batra, P., Kumar, A., Jaglan, S., Sharma, A. K., & Malhotra, S. (2012). Myco-biocontrol of insect pests: factors involved, mechanism, and regulation. Journal of Pathogens, 2012, 1–10. https://doi.org/10.1155/2012/126819
  • Senthil-Nathan, S. (2015). A review of biopesticides and their mode of action against insect pests. In Thangavel, P., & Shridevi, G. (Eds.), Environmental Sustainability (pp. 49–63). https://doi.org/10.1007/978-81-322-2056-5_3
  • Sharma, L., Bohra, N., Rajput, V. D., Quiroz-Figueroa, F. R., Singh, R. K., & Marques, G. (2021). Advances in entomopathogen isolation: A case of bacteria and fungi. Microorganisms, 9(1), 1–25. https://doi.org/10.3390/microorganisms9010016
  • Shin, T. Y., Lee, M. R., Park, S. E., Lee, S. J., Kim, W. J., & Kim, J. S. (2020). Pathogenesis-related genes of entomopathogenic fungi. Archives of Insect Biochemistry and Physiology, 105(4), e21747. https://doi.org/10.1002/arch.21747
  • Shinohara, S., Fitriana, Y., Satoh, K., Narumi, I., & Saito, T. (2013). Enhanced fungicide resistance in Isaria fumosorosea following ionizing radiation-induced mutagenesis. FEMS Microbiology Letters, 349(1), 54–60. https://doi.org/10.1111/1574-6968.12295
  • Silva, A. C. L., Silva, G. A., Abib, P. H. N., Carolino, A. T., & Samuels, R. I. (2020). Endophytic colonization of tomato plants by the entomopathogenic fungus Beauveria bassiana for controlling the South American tomato pinworm, Tuta absoluta. CABI Agriculture and Bioscience, 1(1), 1–9. https://doi.org/10.1186/s43170-020-00002-x
  • Sinha, K. K., Choudhary, A. K., & Kumari, P. (2016). Ecofriendly Pest Management for Food Security Entomopathogenic Fungi. Academic Press.https://doi.org/10.1016/B978-0-12-803265-7.00015-4
  • Sorokin, N. (1883). The parasites of plants, man and animals. Rastitelnye Oarazty Ceoveska I Zitotnyh, 2, 268–290.
  • Srygley, R. B. (2012). Ontogenetic changes in immunity and susceptibility to fungal infection in Mormon crickets Anabrus simplex. Journal of Insect Physiology, 58(3), 342–347. https://doi.org/10.1016/j.jinsphys.2011.12.005
  • St. Leger, R. J. (2008). Studies on adaptations of Metarhizium anisopliae to life in the soil. Journal of Invertebrate Pathology, 98(3), 271–276. https://doi.org/10.1016/j.jip.2008.01.007
  • Su, L., Zhu, H., Guo, Y., Du, X., Jianguo, G., Zhang, L., & Qin, C. (2019). Lecanicillium coprophilum (Cordycipitaceae, Hypocreales), a new species of fungus from the feces of Marmota monax in China. Phytotaxa, 387(1), 55–62. https://doi.org/10.11646/phytotaxa.387.1.4
  • Thomas, M. B. (2000). Development of a myco-insecticide for biological control of locusts in Southern Africa. Workshop on Research Priorities for Migrant Pests of Agriculture in Southern Africa, 3, 173. https://www.cabdirect.org/cabdirect/abstract/20188100108
  • Thungrabeab*, M., & Tongma, S. (2007). Effect of entomopathogenic fungi, Beauveria bassiana (Balsam) and Metarhizium anisopliae (Metsch) on non target insects. Current Applied Science And Technology, 7(1–1). https://li01.tci-thaijo.org/index.php/cast/article/view/86784
  • Trandem, N., Bhattarai, U. R., Westrum, K., Knudsen, G. K., & Klingen, I. (2015). Fatal attraction: Male spider mites prefer females killed by the mite-pathogenic fungus Neozygites floridana. Journal of Invertebrate Pathology, 128, 6–13. https://doi.org/10.1016/J.JIP.2015.04.002
  • Uma Devi, K., Padmavathi, J., Uma Maheswara Rao, C., Khan, A. A. P., & Mohan, M. C. (2008). A study of host specificity in the entomopathogenic fungus Beauveria bassiana (Hypocreales, Clavicipitaceae). Biocontrol Science and Technology, 18(10), 975–989. https://doi.org/10.1080/09583150802450451
  • Usman, M., Gulzar, S., Wakil, W., Wu, S., Piñero, J. C., Leskey, T. C., Nixon, L. J., Oliveira-Hofman, C., Toews, M. D., & Shapiro-Ilan, D. (2020). Virulence of entomopathogenic fungi to rhagoletis pomonella (Diptera: Tephritidae) and Interactions With Entomopathogenic Nematodes. Journal of Economic Entomology, 113(6), 2627–2633. https://doi.org/10.1093/JEE/TOAA209
  • Usta, C. (2013). Microorganisms in biological pest control—A review (bacterial toxin application and effect of environmental factors). Current Progress in Biological Research, 13, 287–317. https://doi.org/10.5772/55786
  • Uziel, A., Levy, K., & Yuval, B. (2003). Infection of Ceratitis capitata by two species of the Entomophthora muscae species complex (Zygomycetes: Entomophthorales) in the field. Phytoparasitica, 31(2), 204–206. https://doi.org/10.1007/BF02980791
  • Valero-Jiménez, C. A., Wiegers, H., Zwaan, B. J., Koenraadt, J. M., & Van Kan, J. A. L. (2016). Genes Involved in Virulence of the Entomopathogenic Fungus Beauveria Bassiana. Journal of Invertebrate Pathology, 133, 41–49. https://doi.org/10.1016/j.jip.2015.11.011
  • Valizadeh, H., Abbasipour, H., Mahmoudvand, M., Askary, H., & Reza Moniri, V. (2011). Ensayos de Laboratorio de Metarhizium anisopliae var. acridum (Green muscle®) contra la Langosta de Saxaul, Dericorys albidula Serville (Orthoptera: Dericorythidae). Chilean Journal of Agricultural Research, 71(4), 549–553. https://doi.org/10.4067/S0718-58392011000400008
  • Vandermeer, J., Perfecto, I., & Liere, H. (2009). Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii, through a complex ecological web. Plant Pathology, 58(4), 636–641. https://doi.org/10.1111/j.1365-3059.2009.02067.x
  • Vega, F. E. (2018). The use of fungal entomopathogens as endophytes in biological control: A review. Mycologia. 110(1), 4–30. https://doi.org/10.1080/00275514.2017.1418578
  • Vega, F. E., Goettel, M. S., Blackwell, M., Chandler, D., Jackson, M. A., Keller, S., Koike, M., Maniania, N. K., Monzon, A., & Ownley, B. H. (2009). Fungal entomopathogens: New insights on their ecology. Fungal Ecology, 2(4), 149–159. https://doi.org/10.1016/j.funeco.2009.05.001
  • Vega, F. E., Meyling, N. V., Luangsa-Ard, J. J., & Blackwell, M. (2012). Fungal entomopathogens. In Vega, F., & Kaya, H.K. (Eds.), Insect Pathology (pp. 171–220). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384984-7.00006-3
  • Vega, F. E., Posada, F., Aime, M. C., Pava-Ripoll, M., Infante, F., & Rehner, S. A. (2008). Entomopathogenic fungal endophytes. Biological Control, 46(1), 72–82. https://doi.org/10.1016/j.biocontrol.2008.01.008
  • Vinayaga Moorthi, P., Balasubramanian, C., Selvarani, S., & Radha, A. (2015). Efficacy of sub lethal concentration of entomopathogenic fungi on the feeding and reproduction of Spodoptera litura. SpringerPlus, 4(1), 1–12. https://doi.org/10.1186/S40064-015-1437-1
  • Wakil, W., Kavallieratos, N. G., Ghazanfar, M. U., Usman, M., Habib, A., & El-Shafie, H. A. (2021). Efficacy of different entomopathogenic fungal isolates against four key stored-grain beetle species. Journal of Stored Products Research, 93, 101845. https://doi.org/10.1016/j.jspr.2021.101845
  • Wang, J., Lovett, B., & Leger, R. J. S. (2019). The secretome and chemistry of Metarhizium; a genus of entomopathogenic fungi. Fungal Ecology, 38, 7–11. https://doi.org/10.1016/j.funeco.2018.04.001
  • Weng, Q., Zhang, X., Chen, W., & Hu, Q. (2019). Secondary metabolites and the risks of Isaria fumosorosea and Isaria farinosa. Molecules 2019, Vol. 24, Page 664, 24(4), 664. https://doi.org/10.3390/MOLECULES24040664
  • Wheelis, M. (2002). Biological warfare at the 1346 siege of Caffa. Emerging Infectious Diseases, 8(9), 971. https://doi.org/10.3201/eid0809.010536
  • Woo, R. M., Park, M. G., Choi, J. Y., Park, D. H., Kim, J. Y., Wang, M., Kim, H. J., Woo, S. D., Kim, J. S., & Je, Y. H. (2020). Insecticidal and insect growth regulatory activities of secondary metabolites from entomopathogenic fungi, Lecanicillium attenuatum. Journal of Applied Entomology, 144(7), 655–663. https://doi.org/10.1111/jen.12788.
  • Xie, T., Jiang, L., Li, J., Hong, B., Wang, X., & Jia, Y. (2019). Effects of Lecanicillium lecanii strain JMC-01 on the physiology, biochemistry, and mortality of Bemisia tabaci Q-biotype nymphs. PeerJ, 7, e7690. https://doi.org/10.7717/peerj.7690
  • Xu, J., Xu, X., Shakeel, M., Li, S., Wang, S., Zhou, X., Yu, J., Xu, X., Yu, X., & Jin, F. (2017). The entomopathogenic fungi isaria fumosorosea plays a vital role in suppressing the immune system of plutella xylostella: RNA-Seq and DGE analysis of immunity-related genes. Frontiers in Microbiology, 8(JUL), 1421. https://doi.org/10.3389/FMICB.2017.01421
  • Yan, X., Scherphof, G. L., & Kamps, J. A. A. M. (2005). Liposome Opsonization. Journal of Liposome Research, 15(1), 109–139. https://doi.org/10.1081/LPR-64971
  • Zare, R., & Gams, W. (2001). A revision of Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium gen. Nov. Nova Hedwigia, 73(1), 1–50. https://doi.org/10.1127/nova.hedwigia/73/2001/1
  • Zhang, L., Fasoyin, O. E., Molnár, I., & Xu, Y. (2020). Secondary metabolites from hypocrealean entomopathogenic fungi: Novel bioactive compounds. Natural Product Reports, 37(9), 1181–1206. https://doi.org/10.1039/C9NP00065H
  • Zimmermann, G. (2008). The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus). Biology, Ecology and Use in Biological Control, 18(9), 865–901. https://doi.org/10.1080/09583150802471812
  • Zou, C., Li, L., Dong, T., Zhang, B., & Hu, Q. (2014). Joint action of the entomopathogenic fungus Isaria fumosorosea and four chemical insecticides against the whitefly Bemisia tabaci. Biocontrol Science and Technology. 24(3), 315–324. https://doi.org/10.1080/09583157.2013.860427