1,572
Views
2
CrossRef citations to date
0
Altmetric
ANIMAL HUSBANDRY & VETERINARY SCIENCE

In-vitro assessment of the efficacy of herb-herb combinations against multidrug-resistant mastitis-causing bacteria: Staphylococcus aureus and Klebsiella pneumoniae

, , ORCID Icon, &
Article: 2187250 | Received 03 Jun 2022, Accepted 28 Feb 2023, Published online: 19 Mar 2023

References

  • Adwan, G., Abu-Shanab, B., & Adwan, K. (2010). Antibacterial activities of some plant extracts alone and in combination with different antimicrobials against multidrug–resistant Pseudomonas aeruginosa strains. Asian Pacific Journal of Tropical Medicine, 3(4), 266–17. https://doi.org/10.1016/S1995-7645(10)60064-8
  • Al Bshabshe, A., Joseph, M., Awad El-Gied, A. A., Fadul, A. N., Chandramoorthy, H. C., & Hamid, M. E. (2020). Clinical relevance and antimicrobial profiling of Methicillin-Resistant Staphylococcus aureus (MRSA) on routine antibiotics and ethanol extract of mango kernel (Mangifera indica L.). BioMed Research International, 2020, 4150678. https://doi.org/10.1155/2020/4150678
  • Al-Snafi, A. E. (2013). Pharmacological effects of Allium species grown in Iraq. An overview. International Journal of Pharmaceutical and Health Care Research, 1(4), 132–147.
  • Awouafack, M. D., McGaw, L. J., Gottfried, S., Mbouangouere, R., Tane, P., Spiteller, M., & Eloff, J. N. (2013). Antimicrobial activity and cytotoxicity of the ethanol extract, fractions, and eight compounds isolated from Eriosema robustum (Fabaceae). BMC Complementary and Alternative Medicine, 13(1), 289. https://doi.org/10.1186/1472-6882-13-289
  • Badal, D. S., Dwivedi, A. K., Kumar, V., Singh, S., Prakash, A., Verma, S., & Kumar, J. (2019). Effect of organic manures and inorganic fertilizers on growth, yield and its attributing traits in garlic (Allium sativum L.). Journal of Pharmacognosy and Phytochemistry, 8(3), 587–590.
  • Betoni, J. E., Mantovani, R. P., Barbosa, L. N., DiStasi, L. C., & Fernandes Junior, A. (2006, Jun). Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases. Memorias do Instituto Oswaldo Cruz, 101(4), 387–390; PMID: 16951808. https://doi.org/10.1590/s0074-02762006000400007
  • Brar, J., Fultang, N., Askey, K., Tettamanzi, M. C., & Peethambaran, B. (2018). A novel anti-triple negative breast cancer compound isolated from medicinal herb Myrothamnus flabellifolius. Journal of Medicinal Plants Research, 12(1), 7–14. https://doi.org/10.5897/JMPR2017.6518
  • Chattopadhyay, M. K. (2014). Use of antibiotics as feed additives: A burning question. Frontiers in Microbiology, 5, 334. https://doi.org/10.3389/fmicb.2014.00334
  • Cheesman, M. J., Ilanko, A., Blonk, B., & Cock, I. E. (2017). Developing new antimicrobial therapies: Are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacognosy Reviews, 11(22), 57–72. https://doi.org/10.4103/phrev.phrev_21_17
  • Cheikhyoussef, A., Summers, R. W., & Kahaka, G. K. (2015). Qualitative and quantitative analysis of phytochemical compounds in Namibian Myrothamnus flabellifolius. International Science and Technology Journal of Namibia, 5(2015), 71–83.
  • Che, C. T., Wang, Z. J., Chow, M. S., & Lam, C. W. (2013). Herb-herb combination for therapeutic enhancement and advancement: Theory, practice, and future perspectives. Molecules (Basel, Switzerland), 18(5), 5125–5141. https://doi.org/10.3390/molecules18055125
  • Debalke, D., Birhan, M., Kinubeh, A., & Yayeh, M. (2018). Assessments of antibacterial effects of aqueous-ethanolic extracts of sida rhombifolia‘s aerial part. Scientific World Journal, 2018, 8429809. https://doi.org/10.1155/2018/8429809
  • De Wet, H., Nzama, V. N., & Van Vuuren, S. F. (2012). Medicinal plants used for the treatment of sexually transmitted infections by lay people in northern Maputaland, KwaZulu–Natal Province, South Africa. South African Journal of Botany, 78, 12–20. https://doi.org/10.1016/j.sajb.2011.04.002
  • Dzoyem, J. P., McGaw, L. J., & Eloff, J. N. (2014). In vitro antibacterial, antioxidant, and cytotoxic activity of acetone leaf extracts of nine under-investigated Fabaceae tree species leads to potentially useful extracts in animal health and productivity. BMC Complementary and Alternative Medicine, 14(1), 147. https://doi.org/10.1186/1472-6882-14-147
  • Eloff, J. N. (1998). Which extractant should be used for the screening and isolation of antimicrobial components from plants? Journal of Ethnopharmacology, 60(1), 1–8. https://doi.org/10.1016/s0378-8741(97)00123-2
  • Eloff, J. N. (2019). Avoiding pitfalls in determining the antimicrobial activity of plant extracts and publishing the results. BMC Complementary and Alternative Medicine, 19(1). https://doi.org/10.1186/s12906-019-2519-3
  • El-Saber Batiha G., Magdy Beshbishy A., G Wasef L., Elewa Y. H., A Al-Sagan A., Abd El-Hack M. E., Taha A. E., M Abd-Elhakim Y., & Prasad Devkota H. (2020). Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients, 12(3). https://doi.org/10.3390/nu12030872
  • Esimone, C. O., Iroha, I. R., Ibezim, E. C., Okeh, C. O., & Okpana, E. M. (2006). In vitro evaluation of the interaction between tea extracts and penicillin G against Staphylococcus aureus. African Journal of Biotechnology, 5, 1082–1086.
  • Farooqui, A., Khan, A., Borghetto, I., Kazmi, S. U., Rubino, S., & Paglietti, B. (2015). Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria. Plos One, 10(2), e0118431. https://doi.org/10.1371/journal.pone.0118431
  • Gende, L. B., Floris, I., Fritz, R., & Eguaras, M. J. (2008). Antimicrobial activity of cinnamon (Cinnamomum zeylanicum) essential oil and its main components against Paenibacillus larvae from Argentine. Bulletin of Insectology, 61(1), 1.
  • Goñi, P., López, P., Sánchez, C., Gómez-Lus, R., Becerril, R., & Nerín, C. (2009). Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chemistry, 116(4), 982–989. https://doi.org/10.1016/j.foodchem.2009.03.058
  • Gufe, C., Bokosha, V., Marumure, J., Makuvara, Z., Manatsa, S., Mbonjani, B., Petzer, I., & Makaya, P. V. (2021). Antibiotic susceptibility of mastitogenic bacteria isolated from clinical mastitis cows in Midlands Province, Zimbabwe. Tanzania Veterinary Journal, 35(2), 14–27. https://doi.org/10.4314/tvj.v35i2.2
  • Haroun M. F., & Al-Kayali R. S. (2016). Synergistic effect of Thymbra spicata L. extracts with antibiotics against multidrug- resistant Staphylococcus aureus and Klebsiella pneumoniae strains. Iran J Basic Med Sci, 19(11), 1193–1200.
  • Hombach, M., Böttger, E. C., & Roos, M. (2013). The critical influence of the intermediate category on interpretation errors in revised EUCAST and CLSI antimicrobial susceptibility testing guidelines. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 19(2), E59–71. https://doi.org/10.1111/1469-0691.12090
  • Irshad, M., Zafaryab, M., Singh, M., & Rizvi, M. (2012). Comparative analysis of the antioxidant activity of Cassia fistula extracts. International Journal of Medicinal Chemistry, 2012, 1–6. https://doi.org/10.1155/2012/157125
  • Kuda, T., Iwai, A., & Yano, T. (2004). Effect of red pepper Capsicum annuum var. conoides and garlic Allium sativum on plasma lipid levels and cecal microflora in mice fed beef tallow. Food and Chemical Toxicology, 42(10), 1695–1700. https://doi.org/10.1016/j.fct.2004.06.007
  • Maroyi, A. (2016). Ximenia caffra sond.(Ximeniaceae) in sub-Saharan Africa: A synthesis and review of its medicinal potential. Journal of Ethnopharmacology, 184, 81–100. https://doi.org/10.1016/j.jep.2016.02.052
  • Matan, N., Rimkeeree, H., Mawson, A. J., Chompreeda, P., Haruthaithanasan, V., & Parker, M. (2006). Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions. International Journal of Food Microbiology, 107(2), 180–185. https://doi.org/10.1016/j.ijfoodmicro.2005.07.007
  • Mostafa, A. A., Al-Askar, A. A., Almaary, K. S., Dawoud, T. M., Sholkamy, E. N., & Bakri, M. M. (2018). Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi Journal of Biological Sciences, 25(2), 361–366. https://doi.org/10.1016/j.sjbs.2017.02.004
  • Mulaudzi, R. B., Ndhlala, A. R., Kulkarni, M. G., Finnie, J. F., & Van Staden, J. (2011). Antimicrobial properties and phenolic contents of medicinal plants used by the Venda people for conditions related to venereal diseases. Journal of Ethnopharmacology, 135(2), 330–337. https://doi.org/10.1016/j.jep.2011.03.022
  • Munodawafa, T., Chagonda, L. S., & Moyo, S. R. (2013). Antimicrobial and phytochemical screening of some Zimbabwean medicinal plants. Journal of Biologically Active Products from Nature, 3(5–6), 323–330. https://doi.org/10.1080/22311866.2013.782759
  • Nantapo, C. W. T., & Marume, U. (2022). Exploring the potential of Myrothamnus flabellifolius Welw.(resurrection tree) as a phytogenic feed additive in animal nutrition. Animals, 12(15), 1973. https://doi.org/10.3390/ani12151973
  • Naz, R., & Bano, A. (2012). Antimicrobial potential of Ricinus communis leaf extracts in different solvents against pathogenic bacterial and fungal strains. Asian Pacific Journal of Tropical Biomedicine, 2(12), 944–947. https://doi.org/10.1016/S2221-1691(13)60004-0
  • Ndahetuye, J. B., Persson, Y., Nyman, A. K., Tukei, M., Ongol, M. P., & Båge, R. (2019). Aetiology and prevalence of subclinical mastitis in dairy herds in peri-urban areas of Kigali in Rwanda. Tropical Animal Health and Production, 51(7), 2037–2044. https://doi.org/10.1007/s11250-019-01905-2
  • Parthasarathy, H., & Thombare, S. (2013). Evaluation of antimicrobial activity of Azadirachta indica, Syzygium aromaticum and Cinnamomum zeylanicum against oral microflora. Asian Journal of Experimental Sciences, 27(2), 13–16.
  • Phitaktim, S., Chomnawang, M., Sirichaiwetchakoon, K., Dunkhunthod, B., Hobbs, G., & Eumkeb, G. (2016). Synergism and the mechanism of action of the combination of α-mangostin isolated from Garcinia mangostana L. and oxacillin against an oxacillin-resistant Staphylococcus saprophyticus. BMC Microbiology, 16(1), 195. https://doi.org/10.1186/s12866-016-0814-4
  • Rahman, K. (2003). Garlic and aging: New insights into an old remedy. Ageing Research Reviews, 2(1), 39–56. https://doi.org/10.1016/S1568-1637(02)00049-1
  • Sakagami, Y., Iinuma, M., Piyasena, K. G., & Dharmaratne, H. R. (2005). Antibacterial activity of α-mangostin against vancomycin resistant Enterococci (VRE) and synergism with antibiotics. Phytomedicine, 12(3), 203–208. https://doi.org/10.1016/j.phymed.2003.09.012
  • Singh, N., Rao, A. S., Nandal, A., Kumar, S., Yadav, S. S., Ganaie, S. A., & Narasimhan, B. (2021). Phytochemical and pharmacological review of Cinnamomum verum J. Presl-a versatile spice used in food and nutrition. Food Chem, 338, 127773. https://doi.org/10.1016/j.foodchem.2020.127773
  • Siriwong, S., Teethaisong, Y., Thumanu, K., Dunkhunthod, B., & Eumkeb, G. (2016). The synergy and mode of action of quercetin plus amoxicillin against amoxicillin-resistant Staphylococcus epidermidis. BMC Pharmacology & Toxicology, 17(1), 39. https://doi.org/10.1186/s40360-016-0083-8
  • Souza, G., de Almeida, A. C., Xavier, M., da Silva, L., Sousa, C. N., Sanglard, D. A., & Xavier, A. (2019). Characterization and molecular epidemiology of Staphylococcus aureus strains resistant to beta-lactams isolated from the milk of cows diagnosed with subclinical mastitis. Veterinary World, 12(12), 1931–1939. https://doi.org/10.14202/vetworld.2019.1931-1939
  • Tekwu, E. M., Pieme, A. C., & Beng, V. P. (2012). Investigations of antimicrobial activity of some Cameroonian medicinal plant extracts against bacteria and yeast with gastrointestinal relevance. Journal of Ethnopharmacology, 142(1), 265–273. https://doi.org/10.1016/j.jep.2012.05.005
  • Wallock-Richards, D., Doherty, C. J., Doherty, L., Clarke, D. J., Place, M., Govan, J. R., & Campopiano, D. J. (2014). Garlic revisited: Antimicrobial activity of allicin-containing garlic extracts against Burkholderia cepacia complex. Plos One, 9(12), e112726. https://doi.org/10.1371/journal.pone.0112726