3,054
Views
1
CrossRef citations to date
0
Altmetric
SOIL & CROP SCIENCES

Role of zinc in management of plant diseases: A review

ORCID Icon
Article: 2194483 | Received 08 Sep 2022, Accepted 20 Mar 2023, Published online: 27 Mar 2023

References

  • Abdulkhair, W. M., & Alghuthaymi, M. A. (2016). Plant pathogens. Plant Growth, 49. https://doi.org/10.5772/65325
  • Andreini, C., Banci, L., Bertini, I., & Rosato, A. (2006). Zinc through the three domains of life. Journal of Proteome Research, 5(11), 3173–13. https://doi.org/10.1021/pr0603699
  • Auld, D. S., & Bergman, T. (2008). Medium- and short-chain dehydrogenase/reductase gene and protein families. Cellular and Molecular Life Sciences, 65(24), 3961. https://doi.org/10.1007/s00018-008-8593-1
  • Awan, Z. A., Shoaib, A., & Khan, K. A. (2019). Crosstalk of Zn in combination with other fertilizers underpins interactive effects and induces resistance in tomato plant against early blight disease. Plant Pathology Journal, 35(4), 330–340. https://doi.org/10.5423/PPJ.OA.01.2019.0002
  • Balafrej, H., Bogusz, D., Triqui, Z. E. A., Guedira, A., Bendaou, N., Smouni, A., & Fahr, M. (2020). Zinc hyperaccumulation in plants: A review. Plants, 9(5), 562. https://doi.org/10.3390/plants9050562
  • Bhanukar, M., Rana, G. S., Sehrawat, S. K., & Preeti. (2018). Effect of exogenous application of micronutrients on growth and yield of sweet orange cv. Blood Red. Journal of Pharmacognosy and Phytochemistry, 7(2), 610–612.
  • Bharti, K., Pandey, N., Shankhdhar, D., Srivastava, P. C., & Shankhdhar, S. C. (2014). Effect of different zinc levels on activity of superoxide dismutases & acid phosphatases and organic acid exudation on wheat genotypes. Physiology and Molecular Biology of Plants, 20(1), 41–48. https://doi.org/10.1007/s12298-013-0201-7
  • Boaretto, A. E., Boaretto, R. M., Muraoka, T., NascimentoFilho, V. F., Tiritan, C. S., & Mourãofilho, F. A. A. (2001). Foliar micronutrient application effects on citrus fruit yield, soil and leaf Zn concentrations and 65zn mobilization within the plant. Acta Horticulturae, (594), 203–209. https://doi.org/10.17660/ActaHortic.2002.594.22
  • Bouain, N., Satbhai, S., Saenchai, C., Desbrosses, G., Berthomieu, P., Busch, W., & Rouached, H. (2017). Zinc availability modulates plant growth and immune responses via AZI1. BioRxiv, 1(858), 166645.
  • Brown, P.H., Cakmak, I., Zhang, Q. (1993). Form and Function of Zinc Plants. In: Robson, A.D. (eds) Zinc in Soils and Plants. Developments in Plant and Soil Sciences, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0878-2_7
  • Cabot, C., Martos, S., Llugany, M., Gallego, B., Tolrà, R., & Poschenrieder, C. (2019). A Role of zinc in plant defence against pathogens and herbivores. Frontiers in Plant Science, 10, 1–15. https://doi.org/10.3389/fpls.2019.01171
  • Cai, L., Liu, C., Fan, G., Liu, C., & Sun, X. (2019). Preventing viral disease by ZnONPs through directly deactivating TMV and activating plant immunity in Nicotiana benthamiana. Environmental Science: Nano, 6(12), 3653–3669. https://doi.org/10.1039/C9EN00850K
  • Cakmak, I. (2000). Tansley review No. 111 possible roles of zinc in protecting plant cells from damage by reactive oxygen species. The New Phytologist, 146(2), 185–205. https://doi.org/10.1046/j.1469-8137.2000.00630.x
  • Cakmak, I., & Marschner, H. (1988). Enhanced superoxide radical production in roots of zinc-deficient plants. Journal of Experimental Botany, 39(10), 1449–1460. https://doi.org/10.1093/jxb/39.10.1449
  • Castillo-Gonzalez, J., Ojeda-Barrios, D., Hernandez-Rodriguez, A., González-Franco, A. C., Robles-Herández, L., & López-Ochoa, G. R. (2018). Zinc Metalloenzymes in plants. Interciencia, 43(4), 242–248.
  • Chen, X., Pei, Z., Peng, L., Qin, Q., Duan, Y., Liu, H., Chen, X., Zheng, L., Luo, C., & Huang, J. (2021). Genome-wide identification and functional characterization of CCHC-type zinc finger genes in Ustilaginoidea virens. Journal of Fungi, 7(11), 947. https://doi.org/10.3390/jof7110947
  • Couto, E. A. A., Dias-Arieira, C. R., Kath, J., Homiak, J. A., & Puerari, H. H. (2016). Boron and zinc inhibit embryonic development, hatching and reproduction of Meloidogyne incognita. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 66(4), 346–352. https://doi.org/10.1080/09064710.2015.1118154
  • Deepika, S., Manoranjitham, S. K., Sendhilvel, V., & Karthikeyan, G. (2021). Foliar nutrition enhances the host immunity against papaya ringspot virus. The Pharma Innovation, 10(11), 165–169.
  • Dordas, C. (2008). Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agronomy for Sustainable Development, 28(1), 33–46. https://doi.org/10.1051/agro:2007051
  • Duffy, B. (2007). Zinc and plant disease. In L. E. Datnoff, W. H. Elmer, & D. M. Huber (Eds.), Mineral Nutrition and Plant Disease (pp. 155–178). St. Paul, MN: APS Press.
  • Dumanović, J., Nepovimova, E., Natić, M., Kuča, K., & Jaćević, V. (2021). The significance of reactive oxygen species and antioxidant defence system in plants: A concise overview. Frontiers in Plant Science, 11, 552969. https://doi.org/10.3389/fpls.2020.552969
  • Dutta, S., Ghosh, P. P., Ghorai, A. K., Roy, M. D., & Das, S. (2017). Micronutrients and plant disease suppression. Fertilizers and Environment News, 3(2), 5–9.
  • El-Fawy, M., & El-Said, M. (2018). Effect of foliar application of some zinc and phosphorus sources on controlling Helminthosporium leaf spot disease and production of Sesame. Journal of Plant Protection and Pathology, 9(3), 201–207. https://doi.org/10.21608/jppp.2018.41386
  • Ficke, A., Cowger, C., Bergstrom, G., & Brodal, G. (2018). Understanding yield loss and pathogen biology to improve disease management: Septoria nodorum blotch-a case study in wheat. Plant Disease, 102(4), 696–707. https://doi.org/10.1094/PDIS-09-17-1375-FE
  • Gaunt, R. E. (1995). The relationship between plant disease severity and yield. Annual Review of Phytopathology, 33(1), 119–144. https://doi.org/10.1146/annurev.py.33.090195.001003
  • Glazebrook, J. (2005). Contrasting mechanisms of defence against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43(1), 205. https://doi.org/10.1146/annurev.phyto.43.040204.135923
  • Graham, R. D. (2008). Micronutrient deficiencies in crops and their global significance. In B. J. Alloway (Ed.), Micronutrient deficiencies in global crop production (pp. 221–276). Springer. https://doi.org/10.1016/S0065-2296(08)60261-X
  • Gupta, N., Debnath, S., Sharma, S., Sharma, P., & Purohit, J. (2017). Role of nutrients in controlling the plant diseases in sustainable agriculture. In V. Singh Meena, P. Kumar Mishra, J. Kumar Bisht, & A. Pattanayak (Eds.), Agriculturally important microbes for sustainable agriculture (pp. 217–262). Springer. https://doi.org/10.1007/978-981-10-5343-6_8
  • Gupta, S. K., Rai, A. K., Kanwar, S. S., Sharma, T. R., & Zhang, T. (2012). Comparative analysis of zinc finger proteins involved in plant disease resistance. PLoS One, 7(8), e42578. https://doi.org/10.1371/journal.pone.0042578
  • Hassinen, V. H., Tervahauta, A. I., Schat, H., & Kärenlampi, S. O. (2011). Plant metallothioneins - metal chelators with ROS scavenging activity? Plant Biology, 13(2), 225–232. https://doi.org/10.1111/j.1438-8677.2010.00398.x
  • Helfenstein, J., Pawlowski, M. L., Hill, C. B., Stewart, J., Lagos-Kutz, D., Bowen, C. R., Frossard, E., & Hartman, G. L. (2015). Zinc deficiency alters soybean susceptibility to pathogens and pests. Journal of Plant Nutrition and Soil Science, 178(6), 896–903. https://doi.org/10.1002/jpln.201500146
  • Huber, D. M., & Haneklaus, S. (2007). Managing nutrition to control plant disease. Landbauforschung Volkenrode, 57(4), 313.
  • Ibrahim, H. A., Ibrahim, M. F. M., & Bondok, A. M. (2016). Improving growth, yield and resistance to viral diseases of potato plants through modifying some metabolites using Zinc Sulphate and Jasmonic Acid. Journal of Horticultural Science & Ornamental Plants, 8(3), 161–172.
  • Islam, M. R., Ali, M. A., Islam, M. S., Golam, A. F. M., & Hossain, G. F. (2002). Effect of nutrients and weeding on the incidence of mung bean mosaic. Pakistan Journal of Plant Pathology, 1(2), 48–50. https://doi.org/10.3923/ppj.2002.48.50
  • Jackson, C., Dench, J., Moore, A. L., Halliwell, B., Foyer, C. H., & Hall, D. O. (1978). Subcellular localisation and identification of superoxide dismutase in the leaves of higher plants. European Journal of Biochemistry, 91(2), 339–344. https://doi.org/10.1111/j.1432-1033.1978.tb12685.x
  • Jain, R., Srivastava, S., Solomon, S., Shrivastava, A. K., & Chandra, A. (2010). Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.). Acta Physiologiae Plantarum, 32(5), 979–986. https://doi.org/10.1007/s11738-010-0487-9
  • Kalsoom, H., Ali, S., Sahi, G. M., Habib, A., Zeshan, M. A., Anjum, R., Yousaf, M., & Abdullah, A. (2019). Differential response of micronutrients and novel insecticides to reduce cotton leaf curl virus disease and its vector in Gossypium hirsutum varieties. International Journal of Agriculture and Biology, 22(6), 1507–1512.
  • Khoshgoftarmanesh, A. H., Kabiri, S., Shariatmadari, H., Sharifnabi, B., & Schulin, R. (2010). Zinc nutrition effect on the tolerance of wheat genotypes to Fusarium root-rot disease in a solution culture experiment. Soil Science & Plant Nutrition, 56(2), 234–243. https://doi.org/10.1111/j.1747-0765.2009.00441.x
  • Kim, S., Ahn, I. -P., & Lee, Y. -H. (2001). Analysis of genes expressed during rice - Magnaporthe grisea interactions. Molecular Plant-Microbe Interactions, 14(11), 1340–1346. https://doi.org/10.1094/MPMI.2001.14.11.1340
  • Kumar, D., Rampuria, S., Singh, N. K., & Kirti, P. B. (2016). A novel zinc-binding alcohol dehydrogenase 2 from Arachis diogoi, expressed in resistance responses against late leaf spot pathogen, induces cell death when transexpressed in tobacco. FEBS Open Bio, 6(3), 200–210. https://doi.org/10.1002/2211-5463.12040
  • Li, Z., Fan, Y., Gao, L., Cao, X., Ye, J., & Li, G. (2016). The dual roles of zinc sulfate in mitigating Peach gummosis. Plant Disease, 100(2), 345–351. https://doi.org/10.1094/PDIS-01-15-0131-RE
  • Lucero, G., Boiteux, J., Pizzuolo, P., & Hapon, M. V. (2014). Effect of copper, zinc and potassium phosphates on the mycelium growth of Phytophthora nicotianae in olive tree dry branch disease. Acta horticulturae, 1057(1057), 437–442. https://doi.org/10.17660/ActaHortic.2014.1057.55
  • Machado, P. P., Steiner, F., Zuffo, A. M., & Machado, R. A. (2018). Could the supply of boron and zinc improve resistance of potato to early blight? Potato Research, 61(2), 169–182. https://doi.org/10.1007/s11540-018-9365-4
  • Malandrakis, A. A., Kavroulakis, N., & Chrysikopoulos, C. V. (2019). Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. The Science of the Total Environment, 670, 292–299. https://doi.org/10.1016/j.scitotenv.2019.03.210
  • Marschner, P. (2012). Marschner's mineral nutrition of higher plants (pp. 684). Amsterdam, Netherlands: Elsevier/Academic Press. -0-63043-9
  • Martos, S., Gallego, B., Cabot, C., Llugany, M., Barceló, J., & Poschenrieder, C. (2016). Zinc triggers signalling mechanisms and defence responses promoting resistance to Alternaria brassicicola in Arabidopsis thaliana. Plant Science, 249, 13–24. https://doi.org/10.1016/j.plantsci.2016.05.001
  • Mccall, K. A., Huang, C. -C., & Fierke, C. A. (2000). Function and mechanism of zinc metalloenzymes. In Zinc and Health: Current status and future directions. The Journal of Nutrition, 130(5), 1437–1446. https://doi.org/10.1093/jn/130.5.1437S
  • Noman, A., Aqeel, M., Khalid, N., Islam, W., Sanaullah, T., Anwar, M., Khan, S., Ye, W., & Lou, Y. (2019). Zinc finger protein transcription factors: Integrated line of action for plant antimicrobial activity. Microbial Pathogenesis, 132, 141–149. https://doi.org/10.1016/j.micpath.2019.04.042
  • Oh, S. K., Jeong, M. P., Young, H. J., Lee, S., Chung, E., Kim, S. Y., Choi, D., & Choi, D. (2005). A plant EPF-type zinc-finger protein, CaPIF1, involved in defence against pathogens. Molecular Plant Pathology, 6(3), 269–285. https://doi.org/10.1111/j.1364-3703.2005.00284.x
  • Pan, L., Zhao, L., Jiang, W., Wang, M., Chen, X., Shen, X., Yin C, & Mao, Z. (2022). Effect of zinc oxide nanoparticles on the growth of Malus hupehensis Rehd. seedlings. Frontiers in Environmental Science, 10, 1–14. https://doi.org/10.3389/fenvs.2022.835194
  • Quaglia, M., Bocchini, M., Orfei, B., D’amato, R., Famiani, F., Moretti, C., & Buonaurio, R. (2021). Zinc phosphate protects tomato plants against Pseudomonas syringae pv. Tomato Journal of Plant Diseases and Protection, 128(4), 989–998. https://doi.org/10.1007/s41348-021-00444-z
  • Quaglia, M., Troni, E., D’amato, R., Ederli, L., & Pastor, V. (2022). Effect of zinc imbalance and salicylic acid co‐supply on Arabidopsis response to fungal pathogens with different lifestyles. Plant Biology, 24(1), 30–40. https://doi.org/10.1111/plb.13344
  • Rema, L. P., & Philip, B. (1996). Metallothionein or metallothionein like proteins and heavy metal toxicity in Oreochromis mossambicus (Peters). Indian Journal of Experimental Biology, 34(6), 527–530.
  • Ruttkay-Nedecky, B., Nejdl, L., Gumulec, J., Zitka, O., Masarik, M., Eckschlager, T., Stiborova, M., Adam, V., & Kizek, R. (2013). The role of metallothionein in oxidative stress. International Journal of Molecular Sciences, 14(3), 6044–6066. https://doi.org/10.3390/ijms14036044
  • Savi, G. D., Bortoluzzi, A. J., & Scussel, V. M. (2013). Antifungal properties of Zinc-compounds against toxigenic fungi and mycotoxin. International Journal of Food Science and Technology, 48(9), 1834–1840. https://doi.org/10.1111/ijfs.12158
  • Segal, L. M., & Wilson, R. A. (2018). Reactive oxygen species metabolism and plant-fungal interactions. Fungal Genetics and Biology, 110, 1–9. https://doi.org/10.1016/j.fgb.2017.12.003
  • Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage and antioxidative defence mechanism in plants under stressful conditions. Journal of Botany, 2012, 1–26. https://doi.org/10.1155/2012/217037
  • Shaukat, S. S., & Siddiqui, I. A. (2003). Zinc improves biocontrol of meloidogyne javanica by the antagonistic Rhizobia. Pakistan Journal of Biological Sciences, 6(6), 575–579. https://doi.org/10.3923/pjbs.2003.575.579
  • Shoaib, A., Akhtar, M., Javaid, A., Ali, H., Nisar, Z., & Javed, S. (2021). Antifungal potential of zinc against leaf spot disease in chili pepper caused by Alternaria alternata. Physiology and Molecular Biology of Plants, 27(6), 1361–1376. https://doi.org/10.1007/s12298-021-01004-3
  • Siddiqui, Z. A., Khan, M. R., AbdAllah, E. F., & Parveen, A. (2018). Titanium dioxide and zinc oxide nanoparticles affect some bacterial diseases and growth and physiological changes of beetroot. International Journal of Vegetable Science, 25(5), 409–430. https://doi.org/10.1080/19315260.2018.1523267
  • Siddiqui, Z. A., Khan, A., Khan, M. R., & Abd-Allah, E. F. (2018). Effects of zinc oxide nanoparticles (ZnO NPs) and some plant pathogens on the growth and nodulation of lentil (lens culinaris Medik.). Acta Phytopathologica Et Entomologica Hungarica, 53(2), 195–212. https://doi.org/10.1556/038.53.2018.012
  • Simoglou, K. B., & Dordas, C. (2006). Effect of foliar applied boron, manganese and zinc on tan spot in winter durum wheat. Crop Protection, 25(7), 657–663.
  • Sofy, A. R., Sofy, M. R., Hmed, A. A., Dawoud, R. A., Alnaggar, A. E. A. M., Soliman, A. M., & El-Dougdoug, N. K. (2021). Ameliorating the adverse effects of tomato mosaic tobamovirus infecting tomato plants in Egypt by boosting immunity in tomato plants using zinc oxide nanoparticles. Molecules, 26(5), 1–18. https://doi.org/10.3390/molecules26051337
  • Streeter, T. C., Rengel, Z., Neate, S. M., & Graham, R. D. (2001). Zinc fertilisation increases tolerance to Rhizoctonia solani (AG 8) in Medicago truncatula. Plant and Soil, 228(2), 233–242. https://doi.org/10.1023/A:1004874027331
  • Subramanian, B., Bansal, V. K., & Kav, N. N. V. (2005). Proteome-level investigation of Brassica carinata-derived resistance to Leptosphaeria maculans. Journal of Agricultural and Food Chemistry, 53(2), 313–324. https://doi.org/10.1021/jf048922z
  • Tronchet, M., BalaguÉ, C., Kroj, T., Jouanin, L., & Roby, D. (2010). Cinnamyl alcohol Dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Molecular Plant Pathology, 11(1), 83–92. https://doi.org/10.1111/j.1364-3703.2009.00578.x
  • Wadhwa, N., Joshi, U. N., & Mehta, N. (2014). Zinc induced enzymatic defense mechanisms in rhizoctonia root rot infected cluster bean seedlings. Journal of Botany, 2014, 1–7. https://doi.org/10.1155/2014/735760
  • Wang, Y., Li, X., Fan, B., Zhu, C., & Chen, Z. (2021). Regulation and function of defence-related callose deposition in plants. International Journal of Molecular Sciences, 22(5), 2393. https://doi.org/10.3390/ijms22052393
  • Wongpia, A., & Lomthaisong, K. (2010). Changes in the 2DE protein profiles of chilli pepper (Capsicum annuum) leaves in response to Fusarium oxysporum infection. ScienceAsia, 36(4), 259–270. https://doi.org/10.2306/scienceasia1513-1874.2010.36.259
  • Yang, M., Zhang, F., Wang, F., Dong, Z., Cao, Q., & Chen, M. (2015). Characterization of a type 1 metallothionein gene from the stresses-tolerant plant Ziziphus jujuba. International Journal of Molecular Sciences, 16(8), 16750–16762. https://doi.org/10.3390/ijms160816750
  • Zhang, Z., Chen, Y., Li, B., Chen, T., & Tian, S. (2020). Reactive oxygen species: A generalist in regulating development and pathogenicity of phytopathogenic fungi. Computational and Structural Biotechnology Journal, 18, 3344–3349. https://doi.org/10.1016/j.csbj.2020.10.024
  • Zhao, T., Wu, T., Zhang, J., Wang, Z., Pei, T., Yang, H., Li J, & Xu, X. (2020). Genome-wide analyses of the genetic screening of C2H2-Type zinc finger transcription factors and abiotic and biotic stress responses in Tomato (Solanum lycopersicum) based on RNA-Seq data. Frontiers in Genetics, 11, 1–17. https://doi.org/10.3389/fgene.2020.00540