1,355
Views
1
CrossRef citations to date
0
Altmetric
SOIL & CROP SCIENCES

Evaluation of irrigation scheduling to maximize tomato production using comparative assessment of soil moisture and evapotranspiration in restricted irrigated regions

, , ORCID Icon & ORCID Icon
Article: 2214428 | Received 12 Mar 2023, Accepted 11 May 2023, Published online: 21 May 2023

References

  • Agide, Z., Haileslassie, A., Sally, H., Erkossa, T., Schmitter, P., Langan, S., & Hoekstra, D. (2016). Analysis of water delivery performance of smallholder irrigation schemes in Ethiopia: Diversity and lessons across schemes, typologies and reaches. LIVES Working Paper 15. ILRI. https://hdl.handle.net/10568/73684
  • Aguilar, J., Rogers, D., & Kisekka, I. (2015). Irrigation scheduling based on soil moisture sensors and evapotranspiration. Kansas Agricultural Experiment Station Research Reports, 1(5), 20. https://doi.org/10.4148/2378-5977.1087
  • Ali, H. (2010). Fundamentals of irrigation and on-farm water management. Springer Science & Business Media, 1(Vol. 1). https://doi.org/10.1007/978-1-4419-6335-2
  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao Rome, 300(9), D05109.
  • Awulachew, S. B., & Ayana, M. (2011). Performance of irrigation: An assessment at different scales in Ethiopia. Experimental Agriculture, 47(S1), 57–16. https://doi.org/10.1017/S0014479710000955
  • Ayas, S. E. R. H. A. T. (2019). Water-yield relationships of deficit irrigated tomato (Lycopersicon lycopersicum L. VAR. HAZAR F1). Applied Ecology and Environmental Research, 17(4), 7765–7781. https://doi.org/10.15666/aeer/1704_77657781
  • Bartlett, A. C., Andales, A. A., Arabi, M., & Bauder, T. A. (2015). A smartphone app to extend use of a cloud-based irrigation scheduling tool. Computers and Electronics in Agriculture, 111, 127–130. https://doi.org/10.1016/j.compag.2014.12.021
  • Bennett, D. R., Harms, T. E., & Entz, T. (2014). Net irrigation water requirements for major irrigated crops with variation in evaporative demand and precipitation in southern Alberta. Canadian Water Resources Journal/Revue Canadienne des Ressources Hydriques, 39(1), 63–72. https://doi.org/10.1080/07011784.2014.872864
  • Bisa, M. E., Desta, F. Y., & Bresci, E. (2018). Yield and water productivity analysis of tomato crop under water stress conditions in Ethiopia. In technological interventions in management of irrigated agriculture. In M. R. N. S. Goyal, Ed., Technological interventions in management of irrigated agriculture (1St, pp. 147–159). Apple academic press. https://doi.org/10.1201/9781315204307
  • BlonquistJr, J. M., Jones, S. B., & Robinson, D. A. (2006). Precise irrigation scheduling for turfgrass using a subsurface electromagnetic soil moisture sensor. Agricultural Water Management, 84(1–2), 153–165. https://doi.org/10.1016/j.agwat.2006.01.014
  • Brouwer, C., Prins, K., Kay, M., & Heibloem, M. (1988). Irrigation water management: Irrigation methods, training manual No. 5, 1988, food and agriculture organization of the United Nations. http://www.fao.org/3/S8684E/s8684e00.htm#Contents.
  • Cooley, N., Ooi, S. K., Mareels, I., Dunn, G., Dassanayake, K., & Saleem, K. (2010). Automation of on-farm irrigation: Horticultural case study. IFAC Proceedings Volumes, 43(26), 256–261. https://doi.org/10.3182/20101206-3-JP-3009.00045
  • Daniel, G. E., Berhanu, G. S., & Kassaye, G. L. (2020). Critical review on improving irrigation water use efficiency: Advances, challenges, and opportunities in the Ethiopia context. Water-Energy Nexus, 3, 143–154. https://doi.org/10.1016/j.wen.2020.09.001
  • Derib, S. D., Descheemaeker, K., Haileslassie, A., & Amede, T. (2011). Irrigation water productivity as affected by water management in a small-scale irrigation scheme in the Blue Nile basin, Ethiopia. Experimental Agriculture, 47(S1), 39. https://doi.org/10.1017/S0014479710000839
  • Dirirsa, G., Bekele, D., & Hordofa, T. (2017). Crop coefficient and water requirement of tomato (Melka Shola Variety) at melkassa, central rift valley of Ethiopia. Academic Research Journal of Agricultural Science and Research, 5(5), 336–340. http://doi.org/10.14662/ARJASR2017.03
  • Doorenbos, J., & Pruitt, W. O. (1977). Crop water requirements. FAO irrigation and drainage paper 24. Land and Water Development Division, FAO, Rome, 144(1).
  • Edamo, M. L., Ukumo, T. Y., Lohani, T. K., Mirani, K. B., & Ayele, M. A. (2022). Flood inundation mapping under climate change scenarios in the Boyo watershed of Southern Ethiopia. Journal of Water and Climate Change, 13(8), 3170–3188. https://doi.org/10.2166/wcc.2022.193
  • Evett, S. (2008). Neutron moisture meters ( No. IAEA-TCS–30). http://wwwpub.iaea.org/MTCD/publications/PDF/TCS-30web.pdf
  • Fereres, E., & Soriano, M. A. (2007). Deficit Irrigation for reducing agricultural water use. Journal of Experimental Botany, 58(2), 147–159. https://doi.org/10.1093/jxb/erl165
  • Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research. Academic Press
  • Grabow, G., Ghali, I., Huffman, R., Miller, G., Bowman, D., & Vasanth, A. (2013). Water application efficiency and adequacy of ET-Based and soil moisture–based irrigation controllers for Turfgrass Irrigation. Journal of Irrigation & Drainage Engineering, 139(2), 113–123. Available from. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000528
  • Gu, Z., Qi, Z., Ma, L., Gui, D., Xu, J., Fang, Q., Yuan, S., & Feng, G. (2017). Development of an irrigation scheduling software based on model predicted crop water stress. Computers and Electronics in Agriculture, 143, 208–221. https://doi.org/10.1016/j.compag.2017.10.023
  • Haberle, J., & Svoboda, P. (2015). Calculation of available water supply in crop root zone and the water balance of crops. Contributions to Geophysics and Geodesy, 45(4), 285–298. https://doi.org/10.1515/congeo-2015-0025
  • Hanson, B., Orloff, S., & Peters, D. (2000). Monitoring soil moisture helps refine irrigation management. California Agriculture, 54(3), 38–42. https://doi.org/10.3733/ca.v054n03p38
  • Hedley, C. B., & Yule, I. J. (2009). A method for spatial prediction of daily soil water status for precise irrigation scheduling. Agricultural Water Management, 96(12), 1737–1745. https://doi.org/10.1016/j.agwat.2009.07.009
  • Juan, E. J., Wiedenfeld, B., Jifon, J., & Nelson, S. (2009). Onion yield and quality response to two irrigation scheduling strategies. Scientia horticulturae, 120(3), 301–305. https://doi.org/10.1016/j.scienta.2008.11.004
  • Junwang, G., JiushengLi, J., QuanzhongHuang, H., Zheng, J., Huang, Q., & Liu, H. (2017). Effect of soil moisture-based furrow irrigation scheduling on melon (Cucumismelo L.) yield and quality in an arid region of Northwest China. Agricultural Water Management, 179(1), 167. https://doi.org/10.1016/j.agwat.2016.04.023
  • Kifle, T. (2018). Evaluation of tomato response to deficit irrigation at Humbo Woreda, Ethiopia. International Journal of Research-GRANTHAALAYAH, 6(8), 57–68. https://doi.org/10.29121/granthaalayah.v6.i8.2018.1262
  • Luke, M., Vellidis, G., Coolong, T., & Coolong, T. (2018). Comparing a smartphone irrigation scheduling application with water balance and soil moisture-based irrigation methods: Part I—plasticulture-grown tomato. HortTechnology, 28(3), 354–361. https://doi.org/10.21273/HORTTECH04010-18
  • Marazky El, M. S. (2018). Effects of scheduling techniques of water application for drip irrigation system on tomato yield in arid region. Egyptian Journal of Agricultural Research, 96(1), 237–251. https://doi.org/10.21608/ejar.2018.132661
  • McCready, M. S., & Dukes, M. D. (2011). Landscape irrigation scheduling efficiency and adequacy by various control technologies. Agric Water Manag, 98, 697–704. https://doi.org/10.1016/j.agwat.2010.11.007
  • Micheal. (1997). Irrigation theory and practice. Evaluating lands for irrigation commands (Reprinted ed.). 1991. Vikas Publishing house Pvt.Ltd.
  • Migliaccio, K. W., Morgan, K. T., Vellidis, G., Zotarelli, L., Fraisse, C., Zurweller, B. A., Andreis, J. H., Crane, J. H., & Rowland, D. L. (2016). Smartphone apps for irrigation scheduling. Transactions ASABE, 59, 291–301. https://doi.org/10.13031/trans.59.11158
  • Miller, L., Vellidis, G., & Coolong, T. (2018). Comparing a smartphone irrigation scheduling application with water balance and soil moisture-based irrigation methods: Part II—plasticulture-grown water melon. HortTechnology, 28(3), 362–369. https://doi.org/10.21273/HORTTECH04010-18
  • Munoz-Carpena, R., Dukes, M. D., Li, Y., & Klassen, W. (2005). Field comparison of tensiometer and granular matrix sensor automatic drip irrigation on tomato. HortTechnology, 15(3), 584–590. https://doi.org/10.21273/HORTTECH.15.3.0584
  • Nouri, H., Glenn, E. P., Beecham, S., ChavoshiBoroujeni, S., Sutton, P., Alaghmand, S., Noori, B., & Nagler, P. (2016). Comparing three approaches of evapotranspiration estimation in mixed urban vegetation: Field-based, remote sensing-based and observational-based methods. Remote Sensing, 8(6), 492. https://doi.org/10.3390/rs8060492
  • O’Shaughnessy, S. A., & Rush, C. (2014). Precision agriculture: Irrigation. In N. Alfen (Ed.), Encyclopedia of Agriculture and Food Systems (pp. 521–535). Academic Press.
  • Oshunsanya, S. O. (2019). Introductory Chapter: Relevance of soil pH to agriculture. In S. Oshunsanya (Ed.), Soil pH for nutrient availability and crop performance. IntechOpen. https://doi.org/10.5772/intechopen.82551
  • Payero, J. O., Tarkalson, D. D., Irmak, S., Davison, D., & Petersen, J. L. (2008). Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate. Agric Water Manage, 95(8), 895–908. https://doi.org/10.1016/j.agwat.2008.02.015
  • Ruixiu, S. (2018). Irrigation scheduling using soil moisture sensors. The Journal of Agricultural Science, 10(1), No.1. https://doi.org/10.5539/jas.v10n1p1
  • Sabine, S. J., Werisch, S., Barfus, K., Wagner, M., Schütze, N., & Laber, H. (2016). Field evaluation of irrigation scheduling strategies using a mechanistic crop growth model. Irrigation and Drainage, 65(2), 214–223. https://doi.org/10.1002/ird.1942
  • SAI Platform. (2010). Irrigation scheduling.Water Conservation Technical Briefs Tb6Saleh Taghvaeian, 2017. Surface Irrigation Systems. Oklohoma state university. https://extension.okstate.edu/
  • Savva, A. P., & Frenken, K. (2002). Planning, development, monitoring and evaluation of irrigated agriculture with farmers’ perception, vol 2. In Food and agriculture organization of the united nations (FAO) sub-regional office for east and southern africa (SAFR) (pp. 1–14).
  • Sharma. (2019). Evapotranspiration based irrigation scheduling on water-balance method. University of Minnesota Extension. https://blog-cropnews.extension.umn.edu/2019/01/soil-water-basics-for-irrigation.html
  • Subedi, A., & Chávez, J. L. (2015). Crop evapotranspiration (ET) estimation models: A review and discussion of the applicability and limitations of ET methods. The Journal of Agricultural Science, 7(6), 50. https://doi.org/10.5539/jas.v7n6p50
  • Teklu, L. (2017 April). Effect of furrow irrigation methods and deficit levels on soil properties and yield of tomato (Solanum lycopersicum L.) at Dugda District, Central Rift Valley, Ethiopia. 6(04).
  • Ukumo, T. Y., Edamo, M. L., Abdi, D. M., & Derebe, M. A. (2022). Evaluating water availability under changing climate scenarios in the Woybo catchment, Ethiopia. Journal of Water and Climate Change, 13(11), 4130–4149. https://doi.org/10.2166/wcc.2022.343
  • Varble, J. L., & Chávez, J. L. (2011). Case study: improved agricultural irrigation scheduling using a soil water content sensor (Doctoral dissertation, Colorado State University Libraries). https://doi.org/10.25675/10217/200990
  • Vellidis, G., Liakos, V., Perry, C., Porter, W., & Tucker, M. (2016). Irrigation scheduling for cotton using soil moisture sensors, smartphone apps, and traditional methods. In S. Boyd, M. Huffman, & B. Robertson (Eds.), In: Proceedings of the 2016a Beltwide Cotton Conference (pp. 772–780). New Orleans: National Cotton Council, Memphis.
  • Yadav, P. K., Sharma, F. C., Thao, T., & Goorahoo, D. (2020). Soil moisture sensor-based irrigation scheduling to optimize water use efficiency in vegetables. Irrigation Association, 1–7.
  • Yohannes, D. F., Ritsema, C. J., Eyasua, Y., Solomona, H., Dam, J. C. V., Froebrich, J., Meressa, A., & Meressa, A. (2019). A participatory and practical irrigation scheduling in semiarid areas: The case of the Gumselassa irrigation scheme in Northern Ethiopia. Agricultural Water Management, 218, 102–114. https://doi.org/10.1016/j.agwat.2019.03.036
  • Zhang, J., Sui, X., Li, B., Su, B., Li, J., & Zhou, D. (1998). An improved water-use efficiency for winter wheat grown under reduced irrigation. Field Crops Research, 59(2), 91–98. https://doi.org/10.1016/S0378-4290(98)00104-X
  • Zheng, J., Huang, G., Jia, D., Wang, J., Mota, M., Pereira, L. S., Liu, H., Xu, X., & Liu, H. (2013). Responses of drip irrigated tomato (Solanum lycopersicum L.) yield, quality and water productivity to various soil matric potential thresholds in an arid region of Northwest China. Agricultural Water Management, 129, 181–193. https://doi.org/10.1016/j.agwat.2013.08.001