584
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Tools for soil understanding: Hot Ball method, XRD, and AC complex conductivity

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2221104 | Received 23 Feb 2023, Accepted 30 May 2023, Published online: 15 Jun 2023

References

  • Andrini, L., Moreira Toja, R., Conconi, M. S., Requejo, F. G., & Rendtorff, N. M. (2019). Halloysite nanotube and its firing products: Structural characterization of halloysite, metahalloysite, spinel type silicoaluminate and mullite. Journal of Electron Spectroscopy and Related Phenomena, 234, 19–17. https://doi.org/10.1016/j.elspec.2019.05.007
  • Arias, N. P., Becerra, M. E., & Giraldo, O. (2019). Electrical behavior of a catalyst composed of laminar manganese oxide supported on γ-Al2O3. Molecules, 24(16), 2984. https://doi.org/10.3390/molecules24162984
  • Boguta, P., Sokołowska, Z., Skic, K., & Mukherjee, A. (2017). Use of thermal analysis coupled with differential scanning calorimetry, quadrupole mass spectrometry and infrared spectroscopy (TG-DSC-QMS-FTIR) to monitor chemical properties and thermal stability of fulvic and humic acids. PLoS ONE, 12(12), e0189653. https://doi.org/10.1371/journal.pone.0189653
  • Cao, Q., Gong, S., Li, P., Wan, H., & Cheng, D. (2018). Correlation analysis of thermal physical indexes in subway engineering. Proceedings of the IOP Conference Series: Materials Science and Engineering, Xishuangbanna, Yunnan, China.
  • Chang, W. J., & Weng, C. I. (2002). 10 - Heat and Mass Transfer in Porous Material. In D. B. Ingham & I. Pop (Eds.), Transport phenomena in porous media II (pp. 257–275). Pergamon.
  • Cheshire, M. V., Dumat, C., Fraser, A. R., Hillier, S., & Staunton, S. (2000). The interaction between soil organic matter and soil clay minerals by selective removal and controlled addition of organic matter. European Journal of Soil Science, 51(3), 497–509. https://doi.org/10.1111/j.1365-2389.2000.00325.x
  • de Melo, B. A. G., Motta, F. L., & Santana, M. H. A. (2016). Humic acids: Structural properties and multiple functionalities for novel technological developments. Materials Science and Engineering: C, 62, 967–974. https://doi.org/10.1016/j.msec.2015.12.001
  • FAO. (2023). FAO and the 2030 Agenda for sustainable development. “Food and Agricultural Organization of the United Nations”. Retrieved 4/25/2023 from https://www.fao.org/sustainable-development-goals/overview/fao-and-the-2030-agenda-for-sustainable-development/land-and-soils/en/
  • Fidríková, D., & Kubičár, Ľ. (2012). The use of the hot-ball method for observing the transport of moisture in porous stones. Slovak Journal of Civil Engineering, 20(3), 9. https://doi.org/10.2478/v10189-012-0013-8
  • Flores Cuautle, J. J. A., Arias, N. P., Sandoval González, O. O., Martínez Sibaja, A., Landeta Escamilla, O., & Rivera Vargas, A. (2019). Investigation of thermal conductivity by Hot Ball method and its correlation with soil quality index of veracruz sugarcane soil. Sugar Technology, 21(3), 407–414. https://doi.org/10.1007/s12355-018-0682-3
  • Gavrenko, O. A., Khadjai, G. Y., Merisov, B. A., & Sologubenko, A. V. (1995). Mechanisms of phonon scattering in layered clays. Physica Scripta, 51(2), 282. https://doi.org/10.1088/0031-8949/51/2/018
  • Gerzhova, N., Cote, J., Blanchet, P., Dagenais, C., & Menard, S. (2019). A conceptual framework for modelling the thermal conductivity of dry green roof substrates [Green roof; growing medium; green roof substrate; thermal conductivity; high temperature]. BioResources, 14(4), 27. 2019. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_14_4_8573_Gerzhova_Conceptual_Framework_Modelling_Thermal
  • Glorieux, C., Hudec, J., Guarachi, J., Martinez, K., Flores Cuautle, J. J. A., Kubicar, L., Bohac, V., Marin, E., Calderon Arenas, J. A., Alvarado, S., Janssen, H., & Van De Walle, W. (2017). Round robin test between different heat transport techniques characterizing low thermal conductivity materials. 33rd International Thermal Conductivity Conference and 21st International Thermal Expansion Symposium, Utah.
  • Grekov, D., Montavon, G., Robinet, J.-C., & Grambow, B. (2019). Smectite fraction assessment in complex natural clay rocks from interlayer water content determined by thermogravimetric and thermoporometry analysis. Journal of Colloid and Interface Science, 555, 157–165. https://doi.org/10.1016/j.jcis.2019.07.076
  • Gualtieri, A. F., Ferrari, S., Leoni, M., Grathoff, G., Hugo, R., Shatnawi, M., Paglia, G., & Billinge, S. (2008). Structural characterization of the clay mineral illite-1M. Journal of Applied Crystallography, 41(2), 402–415. https://doi.org/10.1107/S0021889808004202
  • Harte, J., Torn, M. S., Chang, F.-R., Feifarek, B., Kinzig, A. P., Shaw, R., & Shen, K. (1995). Global warming and soil microclimate: Results from a meadow‐warming experiment. Ecological Applications, 5(1), 132–150. https://doi.org/10.2307/1942058
  • Hartmut, Z. (2001). Phonons in layered compounds. Journal of Physics: Condensed Matter, 13(34), 7679. https://doi.org/10.1088/0953-8984/13/34/313
  • Helming, K., Daedlow, K., Paul, C., Techen, A. K., Bartke, S., Bartkowski, B., Kaiser, D., Wollschläger, U., & Vogel, H. J. (2018). Managing soil functions for a sustainable bioeconomy—assessment framework and state of the art. Land Degradation & Development, 29(9), 3112–3126. https://doi.org/10.1002/ldr.3066
  • Hernández, A. J., & Pastor Piñeiro, J. (2008). La restauración en sistemas con suelos degradados: estudio de casos en agroecosistemas mediterráneos y taludes de carretera [Restoration in systems with degraded soils: case studies in Mediterranean agroecosystems and road slopes.].
  • Hinkel, K. M., Paetzold, F., Nelson, F. E., & Bockheim, J. G. (2001). Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993–1999. Global and Planetary Change, 29(3), 293–309. https://doi.org/10.1016/S0921-8181(01)00096-0
  • Höfer, M., & R, F. (2002). Heat transfer in quartz, orthoclase, and sanidine at elevated temperature. Physics and Chemistry of Minerals, 29(9), 571–584. https://doi.org/10.1007/s00269-002-0277-z
  • Hudec, J., Dieska, P., Vitkovic, M., & Kubicar, L. (2015). Sensor based on the hot-ball method for measuring thermophysical parameters. measurement.
  • Hudec, J., Glorieux, C., Dieška, P., & Kubičár, Ľ. (2016). Experimental comparison and validation of hot-ball method with guarded hot plate method on polyurethane foams. AIP Conference Proceedings, 1752(1), 040008. https://doi.org/10.1063/1.4955239
  • Huggins, M. L. (1922). The crystal structure of quartz. Physical Review, 19(4), 363–368. https://doi.org/10.1103/PhysRev.19.363
  • Jbeili, M., & Zhang, J. (2021). Effects of microscopic properties on macroscopic thermal conductivity for convective heat transfer in porous materials. Micromachines, 12(11), 1369. https://doi.org/10.3390/mi12111369
  • Jorand, R., Vogt, C., Marquart, G., & Clauser, C. (2013). Effective thermal conductivity of heterogeneous rocks from laboratory experiments and numerical modeling [https://doi.org/10.1002/jgrb.50373]. Journal of Geophysical Research: Solid Earth, 118(10), 5225–5235. https://doi.org/10.1002/jgrb.50373
  • Juerges, N., & Hansjürgens, B. (2018). Soil governance in the transition towards a sustainable bioeconomy–A review. Journal of Cleaner Production, 170, 1628–1639. https://doi.org/10.1016/j.jclepro.2016.10.143
  • Keller, W. D., Reynolds, R. C., & Inoue, A. (1986). Morphology of clay minerals in the smectite-to-illite conversion series by scanning electron microscopy. Clays and Clay Minerals, 34(2), 187–197. https://doi.org/10.1346/CCMN.1986.0340209
  • Kouyaté, M., Flores-Cuautle, J. J. A., Slenders, E., Sermeus, J., Verstraeten, B., Garay Ramirez, B. M. L., San Martin Martinez, E., Kubicar, L., Vretenar, V., Hudec, J., & Glorieux, C. (2015). Study of thermophysical properties of silver nanofluids by ISS-HD, Hot Ball and IPPE techniques. International Journal of Thermophysics, 36(10–11), 1–11. https://doi.org/10.1007/s10765-015-1985-1
  • Kozlenko, D. P., Dubrovinsky, L. S., Kichanov, S. E., Lukin, E. V., Cerantola, V., Chumakov, A. I., & Savenko, B. N. (2019). Magnetic and electronic properties of magnetite across the high pressure anomaly. Scientific Reports, 9(1), 4464. https://doi.org/10.1038/s41598-019-41184-3
  • Kristl, M., Muršec, M., Šuštar, V., & Kristl, J. (2016). Application of thermogravimetric analysis for the evaluation of organic and inorganic carbon contents in agricultural soils. Journal of Thermal Analysis and Calorimetry, 123(3), 2139–2147. https://doi.org/10.1007/s10973-015-4844-1
  • Kubicar, L. (1990). Pulse method of measuring basic thermophysical parameters. In G. Svehla (Ed.), Comprehensive analytical chemistry, vol XII, thermal analysis (Vol. XII, pp. 1–350). Elsevier.
  • Kündig, W., & Steven Hargrove, R. (1969). Electron hopping in magnetite. Solid State Communications, 7(1), 223–227. https://doi.org/10.1016/0038-1098(69)90729-7
  • Li, R., Zhao, L., Wu, T., Wang, Q., Ding, Y., Yao, J., Wu, X., Hu, G., Xiao, Y., Du, Y., Zhu, X., Qin, Y., Yang, S., Bai, R., Du, E., Liu, G., Zou, D., Qiao, Y., & Shi, J. (2019). Soil thermal conductivity and its influencing factors at the tanggula permafrost region on the Qinghai–Tibet plateau. Agricultural and Forest Meteorology, 264, 235–246. https://doi.org/10.1016/j.agrformet.2018.10.011
  • Marín-Valencia, P. A., Carmona-Garcia, E., Poveda Giraldo, J. A., Arias Duque, N. P., Ballesteros, L. F., & Cardona Alzate, C. A. (2021). The integral use of aromatic plants: Prefeasibility comparison of stand-alone and biorefinery processes using thyme (Thymus vulgaris) as base case. Biomass Conversion and Biorefinery, 11(2), 681–691. https://doi.org/10.1007/s13399-020-00734-w
  • Mariotto, G., Murphy, S., & Shvets, I. V. (2002). Charge ordering on the surface of ${\mathrm{Fe}}_{3}{\mathrm{O}}_{4}(001)$. Physical Review B, 66(24), 245426. https://doi.org/10.1103/PhysRevB.66.245426
  • McBratney, A., Field, D. J., & Koch, A. (2014). The dimensions of soil security. Geoderma, 213, 203–213. https://doi.org/10.1016/j.geoderma.2013.08.013
  • Meunier, A. (2005). Clays. Springer Science & Business Media.
  • Mielnik, L., & Asensio, C. (2018). Using delayed luminescence to characterize humic acids from lake sediments. Journal of Soils and Sediments, 18(8), 2844–2850. https://doi.org/10.1007/s11368-018-1914-6
  • Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272–1276. https://doi.org/10.1107/S0021889811038970
  • Ndzana, G. M., Huang, L., Zhang, Z., Zhu, J., Liu, F., & Bhattacharyya, R. (2019). The transformation of clay minerals in the particle size fractions of two soils from different latitude in China. CATENA, 175, 317–328. https://doi.org/10.1016/j.catena.2018.12.026
  • Oladunjoye, M. A., & Sanuade, O. A. (2012). In situ determination of thermal resistivity of soil: Case study of olorunsogo power plant, Southwestern Nigeria. ISRN Civil Engineering, 2012, 591450. https://doi.org/10.5402/2012/591450
  • Onwuka, B., & Mang, B. (2018). Effects of soil temperature on some soil properties and plant growth. Adv. Plants Agric. Res, 8(1), 34–37.
  • Rai, R. K., Singh, V. P., & Upadhyay, A. (2017). Soil Analysis. In Planning and evaluation of irrigation projects: Methods and implementation pp. 505–523. Elsevier Science. https://books.google.com.mx/books?id=ddq1DQAAQBAJ https://doi.org/10.1016/B978-0-12-811748-4.00017-0
  • Ren, J., Men, L., Zhang, W., & Yang, J. (2019). A new empirical model for the estimation of soil thermal conductivity. Environmental Earth Sciences, 78(12), 1–16. https://doi.org/10.1007/s12665-019-8360-7
  • Revil, A., & Lu, N. (2013). Unified water isotherms for clayey porous materials. Water Resources Research, 49(9), 5685–5699. https://doi.org/10.1002/wrcr.20426
  • Różański, A., & Stefaniuk, D. (2016). Prediction of soil solid thermal conductivity from soil separates and organic matter content: Computational micromechanics approach. European Journal of Soil Science, 67(5), 551–563. https://doi.org/10.1111/ejss.12368
  • Sauer, T. J., & Horton, R. (2005). Soil heat flux. Micrometeorology in Agricultural Systems, 131–154. https://doi.org/10.2134/agronmonogr47.c7
  • Shiozawa, S., & Campbell, G. S. (1990). Soil thermal conductivity. Remote Sensing Reviews, 5(1), 301–310. https://doi.org/10.1080/02757259009532137
  • Sparks, D. L. (1995). Environmental Soil Chemistry: An Overview. In Donald L. S. (Ed.), Environmental Soil Chemistry (pp. 1–22). Academic Press.
  • Tarnawski, V. R., & Leong, W. H. (2012). A series-parallel model for estimating the thermal conductivity of unsaturated soils. International Journal of Thermophysics, 33(7), 1191–1218. https://doi.org/10.1007/s10765-012-1282-1
  • USDA. (1999). Soil quality kit guide. USDA-NRCS-ARS-SQI. Soil Quality Institute, National Resources Conservation Service, United States Department of Agriculture.
  • Usowicz, B., & Lipiec, J. (2020). The effect of exogenous organic matter on the thermal properties of tilled soils in Poland and the Czech Republic. Journal of Soils and Sediments, 20(1), 365–379. https://doi.org/10.1007/s11368-019-02388-2
  • van Wijk, W. R. (1965). Soil Microclimate, Its Creation, Observation and Modification. In P. E. Waggoner, D. M. Gates, E. K. Webb, W. R. van Wijk, J. A. Businger, T. V. Crawford, C. H. Hendershott, D. N. Moss, H. D. Johnson, W. S. Chepil, W. R. Henson, W. R. Gardner, B. Slavík, C. W. Thornthwaite, F. K. Hare, & J. D. McQuigg (Eds.), Agricultural meteorology (pp. 59–73). American Meteorological Society. https://doi.org/10.1007/978-1-940033-58-7_3
  • Vogel, H.-J., Eberhardt, E., Franko, U., Lang, B., Ließ, M., Weller, U., Wiesmeier, M., & Wollschläger, U. (2019). Quantitative evaluation of soil functions: Potential and state. Frontiers in Environmental Science, 7, 164. https://doi.org/10.3389/fenvs.2019.00164
  • Webb, J. (1956). Thermal conductivity of soil. Nature, 178(4541), 1074–1075. https://doi.org/10.1038/1781074b0
  • Weil, R., & Brady, N. (2016). The nature and properties of soils (Vol. 910, 15th ed.). Pearson.
  • Xiong, Z., & Zhang, B. (2019). Thermal transport properties of olivine, wadsleyite, and ringwoodite—a review. Minerals, 9(9), 519. https://doi.org/10.3390/min9090519
  • Zhang, X. R., Kong, G. Q., Wang, L. H., & Xu, X. L. (2020). Measurement and prediction on thermal conductivity of fused quartz. Scientific Reports, 10(1), 6559. https://doi.org/10.1038/s41598-020-62299-y
  • Zhang, S., Liu, Q., Yang, Y., Wang, D., He, J., & Sun, L. (2017). Preparation, morphology, and structure of kaolinites with various aspect ratios. Applied Clay Science, 147, 117–122. https://doi.org/10.1016/j.clay.2017.07.014
  • Zhang, N., & Wang, Z. (2017). Review of soil thermal conductivity and predictive models. International Journal of Thermal Sciences, 117, 172–183. https://doi.org/10.1016/j.ijthermalsci.2017.03.013
  • Zhao, Y., & Si, B. (2019). Thermal properties of sandy and peat soils under unfrozen and frozen conditions. Soil and Tillage Research, 189, 64–72. https://doi.org/10.1016/j.still.2018.12.026
  • Zhou, Y., Yan, C., Tang, A. M., Duan, C., & Dong, S. (2019). Mesoscopic prediction on the effective thermal conductivity of unsaturated clayey soils with double porosity system. International Journal of Heat and Mass Transfer, 130, 747–756. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.001