3,879
Views
1
CrossRef citations to date
0
Altmetric
Animal Husbandry & Veterinary Science

Application of probiotics for sustainable and environment-friendly aquaculture management - A review

Article: 2226425 | Received 21 Mar 2023, Accepted 13 Jun 2023, Published online: 29 Jun 2023

References

  • Abareethan, M., & Amsath, A. (2015). Characterisation and evaluation of probiotic fish feed. Int J Pure Appl Zool, 3(2), 148–23.
  • Abbass, A., Sharifuzzaman, S. M., & Austin, B. (2010). Cellular components of probiotics control Yersinia ruckeri infection in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases, 33(1), 31–37. https://doi.org/10.1111/j.1365-2761.2009.01086.x
  • Abdel Latif, H. M. R., & Khafaga, A. F. (2020). Natural co-infection of cultured Nile tilapia Oreochromis niloticus with Aeromonas hydrophila and Gyrodactylus cichlidarum experiencing high mortality during summer. Aquaculture Research, 51(5), 1880–1892. https://doi.org/10.1111/are.14538
  • Abdelsalam, M., Elgendy, M. Y., Elfadadny, M. R., Ali, S. S., Sherif, A. H., & Abolghait, S. K. (2023). A review of molecular diagnoses of bacterial fish diseases. Aquaculture International, 31(1), 417–434. https://doi.org/10.1007/s10499-022-00983-8
  • Akhter, N., Wu, B., Memon, A. M., & Mohsin, M. (2015). Probiotics and prebiotics associated with aquaculture: A review. Fish & Shellfish Immunology, 45(2), 733–741. https://doi.org/10.1016/j.fsi.2015.05.038
  • Alarcón, F., Martinez, T., Dı́az, M., & Moyano, F. (2001). Characterisation of digestive carbohydrase activity in the gilthead seabream (Sparus aurata). Hydrobiologia, 445(1–3), 199–204. https://doi.org/10.1023/A:1017521900442
  • Alishahi, M., Tulaby Dezfuly, Z., Mohammadian, T., & Mesbah, M. (2018). Effects of two probiotics, Lactobacillus plantarum and Lactobacillus bulgaricus on growth performance and intestinal lactic acid bacteria of Cyprinus carpio. Iranian Journal of Veterinary Medicine, 12(3), 207–218. https://doi.org/10.22059/IJVM.2018.235444.1004816
  • Allameh, S., Yusoff, F., Ringø, E., Daud, H., Saad, C., & Ideris, A. (2016). Effects of dietary mono- and multiprobiotic strains on growth performance, gut bacteria and body composition of Javanese carp (Puntius gonionotus Bleeker 1850). Aquaculture Nutrition, 22(2), 367–373. https://doi.org/10.1111/anu.12265
  • Alonso, S., Castro, M. C., Berdasco, M., de la Banda IG, Moreno-Ventas, X., & de Rojas, A. H. (2019). Isolation and partial characterisation of lactic acid bacteria from the gut microbiota of marine fishes for potential application as probiotics in aquaculture. Probiotics and Antimicrobial Proteins, 11(2), 569–579. https://doi.org/10.1007/s12602-018-9439-2
  • Aly, S. M., Abd-El-Rahman, A. M., John, G., & Mohamed, M. F. (2008). Characterisation of some bacteria isolated from Oreochromis niloticus and their potential use as probiotics. Aquaculture, 277(1–2), 1–6. https://doi.org/10.1016/j.aquaculture.2008.02.021
  • Amenyogbe, E., Chen, G., Wang, Z., Huang, J., Huang, B., & Li, H. (2020). The exploitation of probiotics, prebiotics and synbiotics in aquaculture: Present study, limitations and future directions: A review. Aquaculture International, 28(3), 1017–1041. https://doi.org/10.1007/s10499-020-00509-0
  • Amenyogbe, E., Huang, J.-S., Chen, G., & Wang, W.-Z. (2021). Probiotic Potential of Indigenous (Bacillus sp. RCS1, Pantoea agglomerans RCS2, and Bacillus cereus strain RCS3) Isolated from cobia fish (rachycentron canadum) and their antagonistic effects on the growth of pathogenic vibrio alginolyticus, vibrio harveyi, streptococcus iniae, and streptococcus agalactiae. Front Mar Science, 8, 672213. https://doi.org/10.3389/fmars.2021.672213
  • Amenyogbe, E., Luo, J., Fu, W.-J., Abarike, E. D., Wang, Z.-L., Huang, J.-S., Ayisi, C. L., & Chen, G. (2022). Effects of autochthonous strains mixture on gut microbiota and metabolic profile in cobia (Rachycentron canadum). Scientific Reports, 12(1), 17410. https://doi.org/10.1038/s41598-022-19663-x
  • Amenyogbe, E., Yang, E. J., Xie, R. T., Huang, J. S., & Chen, G. (2022). Influences of indigenous isolates Pantoea agglomerans RCS2 on growth, proximate analysis, haematological parameters, digestive enzyme activities, serum biochemical parameters, antioxidants activities, intestinal morphology, disease resistance, and molecular immune response in juvenile’s cobia fish (Rachycentron canadum). Aquaculture, 551, 737942. https://doi.org/10.1016/j.aquaculture.2022.737942
  • Amenyogbe, E., Zhang, J. D., Huang, J. S., & Chen, G. (2022). The efficiency of indigenous isolates Bacillus sp. RCS1 and Bacillus cereus RCS3 on growth performance, blood biochemical indices and resistance against Vibrio harveyi in cobia fish (Rachycentron canadum) juveniles. Aquaculture Reports, 25, 101241. https://doi.org/10.1016/j.aqrep.2022.101241
  • Arijo, S., Brunt, J., Chabrillón, M., Diaz-Rosales, P., & Austin, B. (2008). Subcellular components of Vibrio harveyi and probiotics induce immune responses in rainbow trout, Oncorhynchus mykiss (Walbaum), against V. harveyi. Journal of Fish Diseases, 31(8), 579–590. https://doi.org/10.1111/j.1365-2761.2008.00932.x
  • Ashouri, G., Soofiani, N. M., Hoseinifar, S. H., Jalali, S. A. H., Morshedi, V., Van Doan, H., & Torfi Mozanzadeh, M. (2018). Combined effects of dietary low molecular weight sodium alginate and Pediococcus acidilactici MA18/5M on growth performance, haematological and innate immune responses of Asian sea bass (Lates calcalifer) juveniles. Fish & Shellfish Immunology, 79, 34–41. https://doi.org/10.1016/j.fsi.2018.05.009
  • Austin, B. (2019). Methods for the diagnosis of bacterial fish diseases. Marine Life Science & Technology, 1(1), 41–49. https://doi.org/10.1007/s42995-019-00002-5
  • Avella, M. A., Olivotto, I., Silvi, S., Place, A. R., & Carnevali, O. (2010). Effect of dietary probiotics on clownfish: A molecular approach to define how lactic acid bacteria modulate development in a marine fish. American Journal of Physiology-Regulatory, Integrative & Comparative Physiology, 298(2), R359–R371. https://doi.org/10.1152/ajpregu.00300.2009
  • Awan, F., Dong, Y., Wang, N., Liu, J., Ma, K., & Liu, Y. (2018). The fight for invincibility: Environmental stress response mechanisms and Aeromonas hydrophila. Microbial Pathogenesis, 116, 135–145. https://doi.org/10.1016/j.micpath.2018.01.023
  • Balcázar, J. L., De Blas, I., Ruiz-Zarzuela, I., Vendrell, D., Gironés, O., & Muzquiz, J. L. (2007). Enhancement of the immune response and protection induced by probiotic lactic acid bacteria against furunculosis in rainbow trout (Oncorhynchus mykiss). FEMS Immunology and Medical Microbiology, 51(1), 185–193. https://doi.org/10.1111/j.1574-695X.2007.00294.x
  • Balcazar, J. L., de Blas, I., Ruiz-Zazuela, I., Cunningham, D., Vandrell, D., & Muzquiz, J. L. (2006). The role of probiotics in aquaculture. Veterinary Microbiology, 114(3–4), 173–186. https://doi.org/10.1016/j.vetmic.2006.01.009
  • Balcázar, J. L., Vendrell, D., de Blas, I., Ruiz-Zarzuela, I., Gironés, O., & Muzquiz, J. L. (2006). Immune modulation by probiotic strains: Quantification of phagocytosis of Aeromonas salmonicida by leukocytes isolated from gut of rainbow trout (Oncorhynchus mykiss) using a radiolabelling assay. Comparative Immunology, Microbiology and Infectious Diseases, 29(5), 335–343. https://doi.org/10.1016/j.cimid.2006.09.004
  • Balcázar, J. L., Vendrell, D., de Blas, I., Ruiz-Zarzuela, I., Muzquiz, J. L., & Girones, O. (2008). Characterisation of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish. Aquaculture, 278(1–4), 188–191. https://doi.org/10.1016/j.aquaculture.2008.03.014
  • Banerjee, S. P., Dora, K. C., & Chowdhury, S. (2013). Detection, partial purification and characterisation of bacteriocin produced by Lactobacillus brevis FPTLB3 isolated from freshwater fish. Journal of Food Science and Technology, 50(1), 17–25. https://doi.org/10.1007/s13197-011-0240-4
  • Baños, A., Ariza, J. J., Nuñez, C., Gil-Martı́nez, L., Garcı́a-López, J. D., Martı́nez- Bueno, M., & Valdivia, E. (2019). Effects of Enterococcus faecalis UGRA10 and the enterocin AS-48 against the fish pathogen Lactococcus garvieae. Studies in vitro and in vivo. Food Microbiology, 77, 69–77. https://doi.org/10.1016/j.fm.2018.08.002
  • Bekele, B., Workagegn, K. B., & Natarajan, P. (2019). Prevalence and antimicrobial susceptibility of pathogenic bacteria in Nile tilapia, Oreochromis niloticus L. International Journal of Aquaculture and Fishery Sciences, 5(4), 22–26. https://doi.org/10.17352/2455-8400.000047
  • Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., & Gil, A. (2012). Probiotic mechanisms of action. Annals of Nutrition and Metabolism, 61(2), 160–174. https://doi.org/10.1159/000342079
  • Biagi, E., Rampelli, S., Turroni, S., Quercia, S., Candela, M., & Brigidi, P. (2017). The gut microbiota of centenarians: Signatures of longevity in the gut microbiota profile. Mechanisms of Ageing and Development, 165, 180–184. https://doi.org/10.1016/j.mad.2016.12.013
  • Bisht, A., Singh, U. P., & Pandey, N. (2012). Bacillus subtilis as a potent probiotic for enhancing growth in fingerlings of common carp (Cyprinus carpio Linnaeus). Indian Journal Fish, 59(3), 103–107.
  • Br¨onmark, C., & Hansson, L.-A. (2017). The Biology of Lakes and Ponds. Oxford University Press. https://doi.org/10.1093/oso/9780198713593.001.0001
  • Bradley, J. E., & Jackson, J. A. (2008). Measuring immune system variation to help understand host-pathogen community dynamics. Parasitology, 135(7), 807–823. https://doi.org/10.1017/S0031182008000322
  • Brunt, J., Newaj-Fyzul, A., & Austin, B. (2007). The development of probiotics for the control of multiple bacterial diseases of rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases, 30(10), 573–579. https://doi.org/10.1111/j.1365-2761.2007.00836.x
  • Butt, R. L., & Volkoff, H. (2019). Gut microbiota and energy homeostasis in fish. Frontiers in Endocrinology, 10. https://doi.org/10.3389/fendo.2019.00009
  • Caipang, C., Suharman, I., Avillanosa, A., & Bargoyo, V. (2020). Host-derived Probiotics for Finfish Aquaculture. In IOP Conf Ser: Earth Environ Sci (Vol. 430. p. 012026). IOP Publishing. https://doi.org/10.1088/1755-1315/430/1/012026
  • Carnevali, O., Avella, M. A., & Gioacchini, G. (2013). Effects of probiotic administration on zebrafish development and reproduction. General & Comparative Endocrinology, 188, 297–302. https://doi.org/10.1016/j.ygcen.2013.02.022
  • Carnevali, O., Maradonna, F., & Gioacchini, G. (2017). Integrated control of fish metabolism, well-being and reproduction: The role of probiotic. Aquaculture, 472, 144–155. https://doi.org/10.1016/j.aquaculture.2016.03.037
  • Chabrillón, M., Arijo, S., Dı́az-Rosales, P., Balebona, M. C., & Moriñigo, M. A. (2006). Interference of Listonella anguillarum with potential probiotic microorganisms isolated from farmed gilthead seabream (Sparus aurata L.). Aquaculture Research, 37(1), 78–86. https://doi.org/10.1111/j.1365-2109.2005.01400.x
  • Chabrillón, M., Rico, R. M., Arijo, S., Díaz-Rosales, P., Balebona, M. C., & Moriñigo, M. A. (2005). Interactions of microorganisms isolated from gilthead sea bream, Sparus aurata L., on Vibrio harveyi, a pathogen of farmed Senegalese sole, Solea senegalensis (Kaup). Journal of Fish Diseases, 28(9), 531–537. https://doi.org/10.1111/j.1365-2761.2005.00657.x
  • Chabrillón, M., Rico, R. M., Balebona, M. C., & Moriñigo, M. A. (2005). Adhesion to sole, Solea senegalensis Kaup, mucus of microorganisms isolated from farmed fish, and their interaction with Photobacterium damselae subsp. piscicida. Journal of Fish Diseases, 28(4), 229–237. https://doi.org/10.1111/j.1365-2761.2005.00623.x
  • Chahad Bourouni, O., El Bour, M., Mraouna, R., Abdennaceur, H., & Boudabous, A. (2007). Preliminary selection study of potential probiotic bacteria from aquacultural area in Tunisia. Annals of Microbiology, 57(2), 185. https://doi.org/10.1007/BF03175205
  • Chauhan, A., & Singh, R. (2019). Probiotics in aquaculture: A promising emerging alternative approach. Symbiosis, 77(2), 99–113. https://doi.org/10.1007/s13199-018-0580-1
  • Chen, H., Liu, S., Xu, X., Liu, S., Zhou, G., Sun, K., Zhao, J., & Ying, G. (2015). Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China: Occurrence, bioaccumulation and human dietary exposure. Marine Pollution Bulletin, 90(1–2), 181–187. https://doi.org/10.1016/j.marpolbul.2014.10.053
  • Cheung, C. C., Clifton, D. K., & Steiner, R. A. (1997). Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology, 138, 4489–4492. http://doi.org/10.1210/endo.138.10.5570
  • Chythanya, R., Karunasagar, I., & Karunasagar, I. (2002). Inhibition of shrimp pathogenic vibrios by a marine Pseudomonas I-2 strain. Aquaculture, 208(1–2), 1–10. https://doi.org/10.1016/S0044-8486(01)00714-1
  • Copeland, D. L., Duff, R. J., Liu, Q., Prokop, J., & Londraville, R. L. (2011). Leptin in teleost fishes: An argument for comparative study. Frontiers in Physiology, 2, 26. https://doi.org/10.3389/fphys.2011.00026
  • Cordero, H., Guardiola, F. A., Tapia-Paniagua, S. T., Cuesta, A., Meseguer, J., Balebona, M. C., Moriñigo, M. Á., & Esteban, M. Á. (2015). Modulation of immunity and gut microbiota after dietary administration of alginate encapsulated Shewanella putrefaciens Pdp11 to gilthead seabream (Sparus aurata L.). Fish & Shellfish Immunology, 45(2), 608–618. https://doi.org/10.1016/j.fsi.2015.05.010
  • Dahiya, T., Gahlawat, S. K., & Sihag, R. C. (2012). Elimination of pathogenic bacterium (Micrococcus sp.) by the use of probiotics. Turkish Journal of Fisheries and Aquatic Sciences, 12(1), 185–187. https://doi.org/10.4194/1303-2712-v12_1_21
  • Dahiya, T. P., Kant, R., Singh, G., & Sihag, R. C. (2012). Elimination of pathogenic bacterium, Aeromonas hydrophila by the use of probiotics. Journal of FisheriesSciences Com, 6(3), 209–214. https://doi.org/10.3153/jfscom.2012024
  • Das, A., Nakro, K., Chowdhury, S., & Kamilya, D. (2013). Effects of potential probiotic Bacillus amyloliquefaciens FPTB16 on systemic and cutaneous mucosal immune responses and disease resistance of catla (Catla catla). Fish and Shellfish Immunology, 35(5), 1547–1553. https://doi.org/10.1016/j.fsi.2013.08.022
  • Dawood, M. A., Magouz, F. I., Salem, M. F., & Abdel Daim, H. A. (2019). Modulation of digestive enzyme activity, blood health, oxidative responses and growthrelated gene expression in GIFT by heat-killed Lactobacillus plantarum (L-137). Aquaculture, 505, 127–136. https://doi.org/10.1016/j.aquaculture.2019.02.053
  • Decamp, O., Moriarty, D. J. W., & Lavens, P. (2008). Probiotics for shrimp larviculture: Review of field data from Asia and Latin America. Aquaculture Research, 39(4), 334–338. https://doi.org/10.1111/j.1365-2109.2007.01664.x
  • De Schryver, P., Defoirdt, T., Boon, N., Verstraete, W., & Bossier, P. (2012). Managing the microbiota in aquaculture systems for disease prevention and control. In B. Austin (Ed.), Infectious Disease in Aquaculture: Prevention and Control (pp. 393–418). Woodhead.
  • DiCesare, A., Vignaroli, C., Luna, G. M., Pasquaroli, S., & Biavasco, F. (2012). Antibiotic resistant enterococci in seawater and sediments from a coastal fish farm. Microbial Drug Resistance, 18(5), 502–509. https://doi.org/10.1089/mdr.2011.0204
  • Dimitroglou, A., Merrifield, D. L., Carnevali, O., Picchietti, S., Avella, M. A., Daniels, C. L., Güroy, D., & Davies, S. (2011). Microbial manipulations to improve fish health and production – a Mediterranean perspective. Fish & Shellfish Immunology, 30(1), 1–16. https://doi.org/10.1016/j.fsi.2010.08.009
  • Dong, H. T., Senapin, S., LaFrentz, B., & Rodkhum, C. (2016). Virulence assay of rhizoid and non-rhizoid morphotypes of Flavobacterium columnare in red tilapia, Oreochromis sp., fry. Journal of Fish Diseases, 39(6), 649–655. https://doi.org/10.1111/jfd.12385
  • EI-Jakee, J., Elshamy, S., Hassan, A. W., Abdelsalam, M., Younis, N., El-Hady, M. A., & Eissa, A. E. (2020). Isolation and characterization of Mycoplasmas from some moribund Egyptian fishes. Aquaculture International, 28(3), 901–912. https://doi.org/10.1007/s10499-019-00502-2
  • El-Adawy, M. M., Eissa, A. E., Shaalan, M., Ahmed, A. A., Younis, N. A., Ismail, M. M., & Abdelsalam, M. (2020). Green synthesis and physical properties of Gum Arabic-silver nanoparticles and its antibacterial efficacy against fish bacterial pathogens. Aquaculture Research, 52(3), 1247–1254. https://doi.org/10.1111/are.14983
  • El-Attar, A. A., & Moustafa, M. (1996). Some studies on tail and rot disease among cultured tilapia fishes. Assiut Veterinary Medical Journal, 35(70), 155–162. https://doi.org/10.21608/avmj.1996.183962
  • Elgendy, M. Y., Kenawy, A. M., & El Deen, A. E. (2016). Gyrodactylus anguillae and Vibrio vulnificus infections affecting cultured eel, Anguilla anguilla. Comunicata Scientiae, 7(1), 1–11. https://doi.org/10.14295/cs.v7i1.1248
  • Elgendy, M. Y., Shaalan, M., Abdelsalam, M., Eissa, A. E., El-Adawy, M. M., & Seida, A. A. (2021). Antibacterial activity of silver nanoparticles against antibiotic-resistant Aeromonas veronii infections in Nile tilapia, Oreochromis niloticus (L.), in vitro and in vivo assay. Aquaculture Research, 53(3), 901–920. https://doi.org/10.1111/are.15632
  • Elgendy, M. Y., Soliman, W. S., Abbas, W. T., Ibrahim, T. B., Younes, A. M., & Omara, S. T. (2016). Investigation of some virulence determents in Aeromonas hydrophila strains obtained from different polluted aquatic environments. Jordan Journal of Biological Sciences, 7(1), 265–272.
  • Falcinelli, S., Picchietti, S., Rodiles, A., Cossignani, L., Merrifield, D. L., Taddei, A. R., Maradonna, F., Olivotto, I., Gioacchini, G., & Carnevali, O. (2015). Lactobacillus rhamnosus lowers zebrafish lipid content by changing gut microbiota and host transcription of genes involved in lipid metabolism. Scientific Reports, 5(1), 9336. https://doi.org/10.1038/srep09336
  • Falcinelli, S., Rodiles, A., Unniappan, S., Picchietti, S., Gioacchini, G., Merrifield, D. L., & Carnevali, O. (2016). Probiotic treatment reduces appetite and glucose level in the zebrafish model. Scientific Reports, 6(1), 18061. https://doi.org/10.1038/srep18061
  • FAO. No5 Suppl. 8 Recommendations for prudent and responsible use of veterinary medicines in aquaculture. (2019). Retrieved May 2, 2022. https://www.fao.org/documents/card/en/c/ca7029en/
  • FAO/WHO. (2001). Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Acid Bacteria. Report of a Joint FAO/WHO Expert Consultation. http://www.who.int/foodsafety/publications/fs_management/en/probiotics.pdf?ua=1
  • Feng, J., Chang, X., Zhang, Y., Yan, X., Zhang, J., & Nie, G. (2019). Effects of Lactococcus lactis from Cyprinus carpio L. as probiotics on growth performance, innate immune response and disease resistance against Aeromonas hydrophila. Fish & Shellfish Immunology, 93, 73–81. https://doi.org/10.1016/j.fsi.2019.07.028
  • Fernandez-Fernandez, R., Martini, A. C., Navarro, V. M., Castellano, J. M., Dieguez, C., Aguilar, E., Pinilla, L., & Tena-Sempere, M. (2006). Novel signals for the integration of energy balance and reproduction. Molecular and Cellular Endocrinology, 254–255, 127–132. https://doi.org/10.1016/j.mce.2006.04.026
  • Figueroa, C., Bustos, P., Torrealba, D., Dixon, B., Soto, C., Conejeros, P., & Gallar, J. A. (2017). Coinfection takes its toll: Sea lice override the protective effects of vaccination against a bacterial pathogen in Atlantic salmon. Scientific Reports, 7(1), 17817. https://doi.org/10.1038/s41598-017-18180-6
  • Fleming, A. (1944). The discovery of penicillin. British Medical Bulletin, 2, 4–5.
  • Gatesoupe, F. J. (1999). The use of probiotics in aquaculture. Aquaculture, 180(1–2), 147–165. https://doi.org/10.1016/S0044-8486(99)00187-8
  • Geovanny, D. G. R., Balcázar, J. L., & Ma, S. (2007). 838 Probiotics as control agents in aquaculture. Journal of Ocean University of China, 6(1), 76–79. https://doi.org/10.1007/s11802-007-0076-8
  • German, D. P., Horn, M. H., & Gawlicka, A. (2004). Digestive enzyme activities in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): Ontogenetic, dietary, and phylogenetic effects. Physiological and Biochemical Zoology: PBZ, 77(5), 789–804. https://doi.org/10.1086/422228
  • Ghori, I., Tubassam, M., Ahmad, T., Zuberi, A., & Imran, M. (2022). Gut microbiome modulation mediated by probiotics: Positive impact on growth and health status of Labeo rohita. Frontiers in Physiology, 13, 949559. https://doi.org/10.3389/fphys.2022.949559
  • Giannenas, I., Karamaligas, I., Margaroni, M., Pappas, I., Mayer, E., Encarnação, P., & Karagouni, E. (2015). Effect of dietary incorporation of a multi-strain probiotic on growth performance and health status in rainbow trout (Oncorhynchus mykiss). Fish Physiology and Biochemistry, 41(1), 119–128. https://doi.org/10.1007/s10695-014-0010-0
  • Gioacchini, G., Giorgini, E., Olivotto, I., Maradonna, F., Merrifield, D. L., & Carnevali, O. (2014). The Influence of Probiotics on Zebrafish Danio Rerio Innate Immunity and Hepatic Stress. Zebrafish, 11(2), 98–106. https://doi.org/10.1089/zeb.2013.0932
  • Gioacchini, G., Giorgini, E., Vaccari, L., & Carnevali, O. (2014). Can probiotics affect reproductive processes of aquatic animals? In D. Merrifield & E. Ringø (Eds.), Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics (pp. 328–346). John Wiley & Sons Ltd. https://doi.org/10.1002/9781118897263.ch12
  • Gioacchini, G., Maradonna, F., Lombardo, F., Bizzaro, D., Olivotto, I., & Carnevali, O. (2010). Increase of fecundity by probiotic administration in zebrafish (Danio rerio). Reproduction, 140(6), 953–959. https://doi.org/10.1530/REP-10-0145
  • Gomez, D., Sunyer, J. O., & Salinas, I. (2013). The mucosal immune system of fish: The evolution of tolerating commensals while fighting pathogens. Fish & Shellfish Immunology, 35(6), 1729–1739. https://doi.org/10.1016/j.fsi.2013.09.032
  • Gorgoglione, B., Bailey, C., & Fast, M. D. (2020). Co-infections and multiple stressors in fish. Bull Eur Assoc Fish Pathol, 40(1), 4–19. https://eafp.org/download/2020-volume40/issue_1/40-1-04-gorgoglione.pdf
  • Gorissen, M., Bernier, N. J., Nabuurs, S. B., Flik, G., & Huising, M. O. Two divergent leptin paralogues in zebrafish (Danio rerio) that originate early in teleostean evolution. (2009). The Journal of Endocrinology, 201(3), 329–339. 1677/JOE-09-0034. https://doi.org/10.1677/JOE-09-0034
  • Gram, L., & Melchiorsen, J. (1996). Interaction between fish spoilage bacteria Pseudomonas sp. and Shewanella putrefaciens in fish extracts and on fish tissue. Journal of Applied Bacteriology, 80(6), 589–595. https://doi.org/10.1111/j.1365-2672.1996.tb03262.x
  • Gram, L., Melchiorsen, J., Spanggaard, B., Huber, I., & Nielsen, T. F. (1999). Inhibition of Vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of fish. Applied and Environmental Microbiology, 65(3), 969–973. https://doi.org/10.1128/AEM.65.3.969-973.1999
  • Guardiola, F. A., Bahi, A., Bakhrouf, A., & MÁ, E. (2017). Effects of dietary supplementation with fenugreek seeds, alone or in combination with probiotics, on gilthead seabream(Sparus aurata L.) skinmucosal immunity. Fish & Shellfish Immunology, 65, 169–178. https://doi.org/10.1016/j.fsi.2017.04.014
  • Gueimonde, M., Jalonen, L., He, F., Hiramatsu, M., & Salminen, S. (2006). Adhesion and competitive inhibition and displacement of human enteropathogens by selected lactobacilli. Food Research International, 39(4), 467–471. https://doi.org/10.1016/j.foodres.2005.10.003
  • Guo, X., Chen, D.-D., Peng, K.-S., Cui, Z.-W., Zhang, X.-J., Li, S., & Zhang, Y. A. (2016). Identification and characterisation of Bacillus subtilis from grass carp (Ctenopharynodon idellus) for use as probiotic additives in aquatic feed. Fish & Shellfish Immunology, 52, 74–84. https://doi.org/10.1016/j.fsi.2016.03.017
  • Haenen, O. L. M., Dong, H. T., Hoai, T. D., Crumlish, M., Karunasagar, I., Barkham, T., Chen, S. L., Zadoks, R., Kiermeier, A., Wang, B., Gamarro, E. G., Takeuchi, M., Azmai, M. N. A., Fouz, B., Pakingking, R., Wei, Z. W., & Bondad‐Reantaso, M. G. (2023). Bacterial diseases of tilapia, their zoonotic potential and risk of antimicrobial resistance. Reviews in Aquaculture, 15(S1), 154–185. https://doi.org/10.1111/raq.12743
  • Hai, N. V. (2015). The use of probiotics in aquaculture. Journal of Applied Microbiology, 119(4), 917–935. https://doi.org/10.1111/jam.12886
  • Hai, V. N., & Fotedar, R. (2009). Comparison of the effects of the prebiotics (Bio-Mos® and β-1,3-D-glucan) and the customised probiotics (Pseudomonas synxantha and P. aeruginosa) on the culture of juvenile western king prawns (Penaeus latisulcatus Kishinouye, 1896). Aquaculture, 289(3–4), 310–316. https://doi.org/10.1016/j.aquaculture.2009.02.001
  • Hamdan, A. M., El-Sayed, A. F. M., & Mahmoud, M. M. (2016). Effects of a novel marine probiotic, Lactobacillus plantarum AH 78, on growth performance and immune response of Nile tilapia (Oreochromis niloticus). Journal of Applied Microbiology, 120(4), 1061–1073. https://doi.org/10.1111/jam.13081
  • Han, B., Long, W.-Q., He, J.-Y., Liu, Y.-J., Si, Y.-Q., & Tian, L.-X. (2015). Effects of dietary Bacillus licheniformis on growth performance, immunological parameters, intestinal morphology and resistance of juvenile Nile tilapia (Oreochromis niloticus) to challenge infections. Fish & Shellfish Immunology, 46(2), 225–231. https://doi.org/10.1016/j.fsi.2015.06.018
  • Hasan, K. N., & Banerjee, G. (2020). Recent studies on probiotics as beneficial mediator in aquaculture: Review. The Journal of Basic and Applied Zoology, 81(1), 53. https://doi.org/10.1186/s41936-020-00190-y
  • Hellio, C., Bado-Nilles, A., Gagnaire, B., Renault, T., & Thomas-Guyon, H. (2007). Demonstration of a true phenoloxidase activity and activation of a ProPO cascade in pacific oyster, Crassostrea gigas (Thunberg) in vitro. Fish & Shellfish Immunology, 22(4), 433–440. https://doi.org/10.1016/j.fsi.2006.06.014
  • Hlordzi, V., Kuebutornye, F. K. A., Afriyie, G., Abarike, E. D., Lu, Y., Chi, S., & Anokyewaa, M. A. (2020). The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquaculture Reports, 18, 100503. https://doi.org/10.1016/j.aqrep.2020.100503
  • Hoseinifar, S. H., Sun, Y.-Z., Wang, A., & Zhou, Z. (2018). Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Frontiers in Microbiology, 9, 2429. https://doi.org/10.3389/fmicb.2018.02429
  • Huang, J. C. (2008). The role of peroxisome proliferator-activated receptors in the development and physiology of gametes and preimplantation embryos. PPAR Research, 2008, 1–7. https://doi.org/10.1155/2008/732303
  • Huang, Y., Zhang, L., Tiu, L., & Wang, H. H. (2015). Characterization of antibiotic resistance in commensal bacteria from an aquaculture ecosystem. Front Microbiology, 6, 914. https://doi.org/10.3389/fmicb.2015.00914
  • Hura, M. U. D., Zafar, T., Borana, K., Prasad, J. R., & Iqbal, J. (2018). Effect of commercial probiotic Bacillus megaterium on water quality in composite culture of major carps. The International Journal of Agricultural Science, 8, 268–273.
  • Irianto, A., & Austin, B. (2002a). Probiotics in aquaculture. Journal of Fish Diseases, 25(11), 633–642. https://doi.org/10.1046/j.1365-2761.2002.00422.x
  • Irianto, A., & Austin, B. (2002b). Probiotics in aquaculture. Journal of Fish Diseases, 25, 633–642. https://doi.org/10.1046/j.1365-2761.2002.00422.x/
  • Irianto, A., & Austin, B. (2003). Use of dead probiotic cells to control furunculosis in rainbow trout. Oncorhynchus Mykiss (Walbaum) Journal of Fish Diseases, 26(1), 59–62. https://doi.org/10.1046/j.1365-2761.2003.00414.x
  • Jakhar, V., Sihag, R. C., & Gahlawat, S. K. (2013a). Effect of probiotics on growth and survival of giant freshwater prawn (Macrobrachium rosenbergii de Man). Research on Crops, 14(4), 1264–1268.
  • Jakhar, V., Sihag, R. C., & Gahlawat, S. K. (2013b). Survey and characterization of diseases in giant freshwater prawn (Macrobrachium rosenbergii de Man) in Haryana. Indian Journal of Animal Research, 47(6), 479–485.
  • Jang, W. J., Lee, J. M., Hasan, M. T., Lee, B.-J., Lim, S. G., & Kong, I.-S. (2019). Effects of probiotic supplementation of a plant-based protein diet on intestinal microbial diversity, digestive enzyme activity, intestinal structure, and immunity in olive flounder (Paralichthys olivaceus). Fish & Shellfish Immunology, 92, 719–727. https://doi.org/10.1016/j.fsi.2019.06.056
  • Kim, D. H., & Austin, B. (2006). Innate immune responses in rainbow trout (Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish & Shellfish Immunology, 21(5), 513–524. https://doi.org/10.1016/j.fsi.2006.02.007
  • Kim, S., Covington, A., & Pamer, E. G. (2017). The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunological Reviews, 279, 90–105. https://doi.org/10.1111/imr.12563
  • Kotob, M. H., Menanteau Ledouble, S., Kumar, G., Abdelzaher, M., & El-Matbouli, M. (2016). The impact of coinfections on fish: A review. Veterinary Research, 47(1), 98. https://doi.org/10.1186/s13567-016-0383-4
  • Krogdahl, Å., Hemre, G. I., & Mommsen, T. (2005). Carbohydrates in fish nutrition: Digestion and absorption in postlarval stages. Aquaculture Nutrition, 11(2), 103–122. https://doi.org/10.1111/j.1365-2095.2004.00327.x
  • Kuebutornye, F. K. A., Abarike, E. D., & Lu, Y. (2019). A review on the application of Bacillus as probiotics in aquaculture. Fish & Shellfish Immunology, 87, 820–828. https://doi.org/10.1016/j.fsi.2019.02.010
  • Kumar, R., Mukherjee, S. C., Ranjan, R., & Nayak, S. K. (2008). Enhanced innate immune parameters in Labeo rohita (Ham.) following oral administration of Bacillus subtilis. Fish & Shellfish Immunology, 24(2), 168–172. https://doi.org/10.1016/j.fsi.2007.10.008
  • Lara-Flores, M., Olvera-Novoa, M. A., Guzmán-Méndez, B. E., & López-Madrid, W. (2003). Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquaculture, 216(1–4), 193–201. https://doi.org/10.1016/S0044-8486(02)00277-6
  • Lategan, M. J., Torpy, F. R., & Gibson, L. F. (2004). Control of saprolegniosis in the eel Anguilla australis Richardson, by Aeromonas media strain A199. Aquaculture, 240(1–4), 19–27. https://doi.org/10.1016/j.aquaculture.2004.04.009
  • Lawley, T. D., & Walker, A. W. (2013). Intestinal colonisation resistance. Immunology, 138(1), 1–11. https://doi.org/10.1111/j.1365-2567.2012.03616.x
  • Lazado, C. C., Caipang, C. M. A., & Estante, E. G. (2015). Prospects of host-associated microorganisms in fish and penaeids as probiotics with immunomodulatory functions. Fish & Shellfish Immunology, 45(1), 2–12. https://doi.org/10.1016/j.fsi.2015.02.023
  • Letchumanan, V., Chan, K.-G., & Lee, L.-H. (2015). An insight of traditional plasmid curing in Vibrio species. Front Microbiology, 6, 735. https://doi.org/10.3389/fmicb.2015.00735
  • Levavi-Sivan, B., Bogerd, J., Mañanós, E. L., Gómez, A., & Lareyre, J. J. (2010). Perspectives on fish gonadotropins and their receptors. General & Comparative Endocrinology, 165(3), 412–437. https://doi.org/10.1016/j.ygcen.2009.07.019
  • Lieke, T., Meinelt, T., Hoseinifar, S. H., Pan, B., Straus, D. L., & Steinberg, C. E. W. (2019). Sustainable aquaculture requires environmental‐friendly treatment strategies for fish diseases. Reviews in Aquaculture, 12(2), 943–965. https://doi.org/10.1111/raq.12365
  • Lin, S., Mao, S., Guan, Y., Luo, L., Luo, L., & Pan, Y. (2012). Effects of dietary chitosan oligosaccharides and Bacillus coagulans on the growth, innate immunity and resistance of koi (Cyprinus carpio koi). Aquaculture, 342, 36–41. https://doi.org/10.1016/j.aquaculture.2012.02.009
  • Li, J., Tan, B., & Mai, K. (2009). Dietary probiotic Bacillus OJ and isomaltooligosaccharides influence the intestine microbial populations, immune responses and resistance to white spot syndrome virus in shrimp (Litopenaeus vannamei). Aquaculture, 291, 35–40. https://doi.org/10.1016/j.aquaculture.2009.03.005
  • Liu, H., Wang, S., Cai, Y., Guo, X., Cao, Z., Zhang, Y., Liu, S., Yuan, W., Zhu, W., Zheng, Y., Xie, Z., Guo, W., & Zhou, Y. (2017). Dietary administration of Bacillus subtilis HAINUP40 enhances growth, digestive enzyme activities, innate immune responses and disease resistance of tilapia, Oreochromis niloticus. Fish & Shellfish Immunology, 60, 326–333. https://doi.org/10.1016/j.fsi.2016.12.003
  • Marshall, B. M., & Levy, S. B. (2011). Food animals and antimicrobials: impacts on human health. Clinical microbiology reviews, 24, 718–733. https://doi.org/10.1128/CMR.00002-11
  • Martı́nez-Cruz, P., Ibáñez, A. L., Monroy-Hermosillo, O. A., & Ramı́rez-Saad, H. C. (2012). Use of probiotics in aquaculture. ISRN Microbiology, 916845, 1–13. https://doi.org/10.5402/2012/916845
  • Mechaly, A. S., Viñas, J., & Piferrer, F. (2013). The kisspeptin system genes in teleost fish, their structure and regulation, with particular attention to the situation in Pleuronectiformes. General & Comparative Endocrinology, 188, 258–268. https://doi.org/10.1016/j.ygcen.2013.04.010
  • Medina, M., Sotil, G., Flores, V., Fernández, C., & Sandoval, N. (2020). In vitro assessment of some probiotic properties and inhibitory activity against Yersinia ruckeri of bacteria isolated from rainbow trout Oncorhynchus mykiss (Walbaum). Aquaculture Reports, 18, 100447. https://doi.org/10.1016/j.aqrep.2020.100447
  • Merrifield, D. L., Dimitroglou, A., Foey, A., Davies, S. J., Baker, R. T., Bøgwald, J., Castex, M., & Ringø, E. (2010). The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302(1–2), 1–18. https://doi.org/10.1016/j.aquaculture.2010.02.007
  • Michael, E. T., Amos, S. O., & Hussaini, L. T. (2014). A review on probiotics application in aquaculture. Fisheries and Aquaculture Journal, 5(4), 4. https://doi.org/10.4172/2150-3508.10000111
  • Migliarini, B., Piccinetti, C. C., Martella, A., Maradonna, F., Gioacchini, G., & Carnevali, O. (2011). Perspectives on endocrine disruptor effects on metabolic sensors. General & Comparative Endocrinology, 170(3), 416–423. https://doi.org/10.1016/j.ygcen.2010.11.025
  • Milner, E., Stevens, B., An, M., Lam, V., Ainsworth, M., Dihle, P., Stearns, J., Dombrowski, A., Rego, D., & Segars, K. (2021). Utilising Probiotics for the Prevention and Treatment of Gastrointestinal Diseases. Frontiers in Microbiology, 12, 689958. https://doi.org/10.3389/fmicb.2021.689958
  • Mohammadian, T., Nasirpour, M., Tabandeh, M. R., & Mesbah, M. (2019). Synbiotic effects of b-glucan, mannan oligosaccharide and Lactobacillus casei on growth performance, intestine enzymes activities, immune-hematological parameters and immune-related gene expression in common carp, Cyprinus carpio: An experimental infection with Aeromonas hydrophila. Aquaculture, 511, 634197. https://doi.org/10.1016/j.aquaculture.2019.06.005
  • Moustafa, M., Eissa, A. E., Laila, A. M., Gaafar, A. Y., Abumourad, I. M. K., & Elgendy, M. Y. (2015). Investigations into the potential causes of mass kills in mari-cultured gilthead sea bream (Sparus aurata) at Northern Egypt. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(1), 466–477.
  • Mukai, T., Asasaka, T., Sato, E., Mori, K., Matsumoto, M., & Ohori, H. (2002). Inhibition of binding of Helicobacter pylori to the glycolipid receptors by probiotic Lactobacillus reuteri. FEMS Immunology and Medical Microbiology, 35(2), 105–110. https://doi.org/10.1111/j.1574-695X.2002.tb00541.x
  • Muthukumar, P., & Kandeepan, C. (2015). Isolation, identification and characterisation of probiotic organisms from intestine of fresh water fishes. International Journal of Current Microbiology and Applied Sciences, 4(3), 607–616.
  • Nath, S., Matozzo, V., Bhandari, D., & Faggio, C. (2019). Growth and liver histology of Channa punctatus exposed to a common biofertiliser. Natural Product Research, 33(11), 1591–1598. https://doi.org/10.1080/14786419.2018.1428586
  • Navarrete, P., & Tovar-Ramı́rez, D. (2014). Use of yeasts as probiotics in fish aquaculture. In M. Hernandez-Vergara & C. Perez-Castro (Eds.), Sustainable Aquaculture Techniques 1 (pp. 135–172). IntechOpen. https://doi.org/10.5772/57196
  • NavinChandran, M., Iyapparaj, P., Moovendhan, S., Ramasubburayan, R., Prakash, S., Immanuel, G., & Palavesam, A. (2014). Influence of probiotic bacterium Bacillus cereus isolated from the gut of wild shrimp Penaeus monodon in turn as a potent growth promoter and immune enhancer in P. monodon. Fish and Shellfish Immunology, 36(1), 38–45. https://doi.org/10.1016/j.fsi.2013.10.004
  • Nayak, S. K. (2010). Probiotics and immunity: Fish perspectives. Fish & Shellfish Immunology, 29(1), 2–14. https://doi.org/10.1016/j.fsi.2010.02.017
  • Nayak, S. K., Swain, P., & Mukherjee, S. C. (2007). Effect of dietary supplementation of probiotic and vitamin C on the immune response of Indian major carp. Fish & Shellfish Immunology, 23(4), 892–896. https://doi.org/10.1016/j.fsi.2007.02.008
  • Newaj-Fyzul, A., Adesiyun, A. A., Mutani, A., Ramsubhag, A., Brunt, J., & Austin, B. (2007). Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, Walbaum). Journal of Applied Microbiology, 103(5), 1699–1706. https://doi.org/10.1111/j.1365-2672.2007.03402.x
  • Newaj-Fyzul, A., Al-Harbi, A. H., & Austin, B. (2014). Review: Developments in the use of probiotics for disease control in aquaculture. Aquaculture, 431, 1–11.
  • Newaj-Fyzul, A., & Austin, B. (2015). Probiotics, immunostimulants, plant products and oral vaccines, and their role as feed supplements in the control of bacterial fish diseases. Journal of Fish Diseases, 38(11), 937–955. https://doi.org/10.1111/jfd.12313
  • Newaj-Fyzul, A., Mutani, A., Ramsubhag, A., & Adesiyun, A. (2008). Prevalence of bacterial pathogens and their anti-microbial resistance in tilapia and their pond water in Trinidad. Zoonoses and Public Health, 55(4), 206–213. https://doi.org/10.1111/j.1863-2378.2007.01098.x
  • Nguyen, T. L., Chun, W.-K., Kim, A., Kim, N., Roh, H. J., Lee, Y., Yi, M., Kim, S., Park, C.-I., & Kim, D.-H. (2018). Dietary probiotic effect of Lactococcus lactis WFLU12 on low-molecular-weight metabolites and growth of olive flounder (Paralichythys olivaceus). Frontiers in Microbiology, 9, 2059. https://doi.org/10.3389/fmicb.2018.02059
  • Nguyen, T. L., Park, C.-I., & Kim, D.-H. (2017). Improved growth rate and disease resistance in olive flounder, Paralichthys olivaceus, by probiotic Lactococcus lactis WFLU12 isolated from wild marine fish. Aquaculture, 471, 113–120. https://doi.org/10.1016/j.aquaculture.2017.01.008
  • Nicholson, P., Fathi, M. A., Fischer, A., Mohan, C., Schieck, E., Mishra, N., Heinimann, A., Frey, J., Wieland, B., & Jores, J. (2017). Detection of tilapia lake virus in Egyptian fish farms experiencing high mortalities in 2015. Journal of Fish Diseases, 40(12), 1925–1928. https://doi.org/10.1111/jfd.12650
  • Nicholson, P., Mon-On, N., Jaemwimol, P., Tattiyapong, P., & Surachetpong, W. (2020). Coinfection of tilapia lake virus and Aeromonas hydrophila synergistically increased mortality and worsened the disease severity in tilapia (Oreochromis spp.). Aquaculture, 520, 734746. https://doi.org/10.1016/j.aquaculture.2019.734746
  • Nikoskelainen, S., Ouwehand, A., Salminen, S., & Bylund, G. (2001). Protection of rainbow trout (Oncorhynchus mykiss) from furunculosis by Lactobacillus rhamnosus. Aquaculture, 198(3–4), 229–236. https://doi.org/10.1016/S0044-8486(01)00593-2
  • Ohga, H., Adachi, H., Matsumori, K., Kodama, R., Nyuji, M., Selvaraj, S., Kato, K., Yamamoto, S., Yamaguchi, A., & Matsuyama, M. (2015). mRNA levels of kisspeptins, kisspeptin receptors, and GnRH1 in the brain of chubmackerel during puberty. Comparative Biochemistry & Physiology Part A, Molecular & Integrative Physiology, 179, 104–112. 09.012. https://doi.org/10.1016/j.cbpa.2014.09.012
  • Palermo, F. A., Mosconi, G., Avella, M. A., Carnevali, O., Verdenelli, M. C., Cecchini, C., & Polzonetti-Magni, A. M. (2011). Modulation of cortisol levels, endocannabinoid receptor 1A, proopiomelanocortin and thyroid hormone receptor alpha mRNA expressions by probiotics during sole (Solea solea) larval development. General & Comparative Endocrinology, 171(3), 293–300. https://doi.org/10.1016/j.ygcen.2011.02.009
  • Pandiyan, P., Balaraman, D., Thirunavukkarasu, R., George, E. G. J., Subaramaniyan, K., Manikkam, S., & Sadayappan, B. (2013). Probiotics in aquaculture. Drug Invention Today, 5(1), 55–59. https://doi.org/10.1016/j.dit.2013.03.003
  • Panigrahi, A., & Azad, I. S. (2007). Microbial intervention for better fish health in aquaculture: The Indian scenario. Fish Physiology and Biochemistry, 33(4), 429–440. https://doi.org/10.1007/s10695-007-9160-7
  • Papadopoulou, O., Argyri, A., Varzakis, E. E., Tassou, C., & Chorianopoulos, N. (2018). Greek functional feta cheese: Enhancing quality and safety using a Lactobacillus plantarum strain with probiotic potential. Food Microbiology, 74, 21–33. https://doi.org/10.1016/j.fm.2018.02.005
  • Papadopoulou, O. S., Doulgeraki, A., Panagou, E., & Argyri, A. A. (2023). Editorial: Recent advances and future perspective in probiotics isolated from fermented foods: From quality assessment to novel products. Frontiers in Microbiology, 14, 1150175. https://doi.org/10.3389/fmicb.2023.1150175
  • Pattukumar, V., Kanmani, P., Kumar, R. S., Yuvaraj, N., Paari, A., & Arul, V. (2014). Enhancement of innate immune system, survival and yield in Penaeus monodon reared in ponds using Streptococcus phocae PI80. Aquaculture Nutrition, 20(5), 505–513. https://doi.org/10.1111/anu.12103
  • Pereira, A. M. P. T., Silva, L. J. G., Meisel, L. M., & Pena, A. (2015). Fluoroquinolones and Tetracycline Antibiotics in a Portuguese Aquaculture System and Aquatic Surroundings: Occurrence and Environmental Impact. Journal of Toxicology and Environmental Health. Part A, 78(15), 959–975. https://doi.org/10.1080/15287394.2015.1036185
  • Pfundt, B., Sauerwein, H., & Mielenz, M. (2009). Leptin mRNA and Protein Immunoreactivity in Adipose Tissue and Liver of Rainbow Trout (Oncorhynchus mykiss) and Immunohistochemical Localization in Liver. Anatomia, histologia, embryologia, 38(6), 406–410. https://doi.org/10.1111/j.1439-0264.2009.00951.x
  • Pham, D. K., Chu, J., Do, N. T., Brose, F., Degand, G., Delahaut, P., & Wertheim, H. F. L. (2015). Monitoring Antibiotic Use and Residue in Freshwater Aquaculture for Domestic Use in Vietnam. EcoHealth, 12(3), 480–489. https://doi.org/10.1007/s10393-014-1006-z
  • Picchietti, S., Fausto, A. M., Randelli, E., Carnevali, O., Taddei, A. R., Buonocore, F., Scapigliati, G., & Abelli, L. (2009). Early treatment with Lactobacillus delbrueckii strain induces an increase in intestinal T-cells and granulocytes and modulates immune-related genes of larval Dicentrarchus labrax (L.). Fish & Shellfish Immunology, 26(3), 368–376. https://doi.org/10.1016/j.fsi.2008.10.008
  • Picchietti, S., Guerra, L., Selleri, L., Buonocore, F., Abelli, L., Scapigliati, G., Mazzini, M., & Fausto, A. M. (2008). Compartmentalisation of T cells expressing CD8α and TCR β in developing thymus of sea bass Dicentrarchus labrax (L.). Developmental and Comparative Immunology, 32(2), 92–99. https://doi.org/10.1016/j.dci.2007.04.002
  • Picchietti, S., Mazzini, M., Taddei, A. R., RENNA, R., FAUSTO, A., MULERO, V., CARNEVALI, O., CRESCI, A., & ABELLI, L. (2007). Effects of administration of probiotic strains on GALT of larval gilthead seabream: Immunohistochemical and ultrastructural studies. Fish and Shellfish Immunology, 22(1–2), 57–67. https://doi.org/10.1016/j.fsi.2006.03.009
  • Piccinetti, C. C., Migliarini, B., Petrosino, S., DiMarzo, V., & Carnevali, O. (2010). Anandamide and AM251, via water, modulate food intake at central and peripheral level in fish. General & Comparative Endocrinology, 166(2), 259–267. https://doi.org/10.1016/j.ygcen.2009.09.017
  • Poulsen, L., Siersbæk, M., & Mandrup, S. (2012). Ppars: Fatty acid sensors controlling metabolism. Semin. Seminars in Cell & Developmental Biology, 23(6), 631–639. https://doi.org/10.1016/j.semcdb.2012.01.003
  • Qin, C., Xu, L., Yang, Y., He, S., Dai, Y., Zhao, H., & Zhou, Z. (2014). Comparison of fecundity and offspring immunity in zebrafish fed Lactobacillus rhamnosus CICC 6141 and Lactobacillus casei BL23. Reproduction, 147(1), 53–64. https://doi.org/10.1530/REP-13-0141
  • Rahiman, K. M. M., Jesmi, Y., Thomas, A. P., & Hatha, A. A. M. (2010). Probiotic effect of Bacillus NL110 and Vibrio NE17 on the survival, growth performance and immune response of Macrobrachium rosenbergii (de Man). Aquaculture Research, 41(9), e120–e134. https://doi.org/10.1111/j.1365-2109.2009.02473.x
  • Rahimnejad, S., Guardiola, F. A., Leclercq, E., Ángeles Esteban, M., Castex, M., Sotoudeh, E., & Lee, S.-M. (2018). Effects of dietary supplementation with Pediococcus acidilactici MA18/5M, galactooligosaccharide and their synbiotic on growth, innate immunity and disease resistance of rockfish (Sebastes schlegeli). Aquaculture, 482, 36–44. https://doi.org/10.1016/j.aquaculture.2017.09.020
  • Ray AK. (2017). The advancement of probiotics research and its application in fish farming industries. Research in Veterinary Science, 115, 66–77. https://doi.org/10.1016/j.rvsc.2017.01.016
  • Ray, A., Ghosh, K., & Ringø, E. (2012). Enzyme-producing bacteria isolated from fish gut: A review. Aquaculture Nutrition, 18(5), 465–492. https://doi.org/10.1111/j.1365-2095.2012.00943.x
  • Rengpipat, S., Rukpratanporn, S., Piyatiratitivorakul, S., & Menasaveta, P. (2000). Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture, 191(4), 271–288. https://doi.org/10.1016/S0044-8486(00)00440-3
  • Ringø, E. (1999). Does Carnobacterium divergens isolated from Atlantic salmon, Salmo salar L., colonize the gut of early developing turbot, Scophthalmus maximus L., larvae? Aquaculture Research, 30(3), 229–232. https://doi.org/10.1046/j.1365-2109.1999.00269.x
  • Ringø, E., Birkbeck, T. H., Munro, P. D., Vadstein, O., & Hjelmeland, K. (1996). The effect of early exposure to Vibrio Pelagius on the aerobic bacterial flora of turbot, Scophthalmus maximus (L.) larvae. The Journal of Applied Bacteriology, 81(2), 207–211. https://doi.org/10.1111/j.1365-2672.1996.tb04502.x
  • Ringø, E., Doan, H. V., Lee, S., & Song, S. K. (2020). Lactic acid bacteria in shellfish: Possibilities and challenges. Reviews in Fisheries Science & Aquaculture, 28(2), 139–169. https://doi.org/10.1080/23308249.2019.1683151
  • Ringø, E., & Gatesoupe, F. J. (1998). Lactic acid bacteria in fish: A review. Aquaculture, 160(3–4), 177–203. https://doi.org/10.1016/S0044-8486(97)00299-8
  • Ringø, E., Hoseinifar, S. H., Ghosh, K., Doan, H., Van Beck, B. R., & Song, S. K. (2018). Lactic acid bacteria in finfish—an update. Frontiers in Microbiology, 9, 1818. https://doi.org/10.3389/fmicb.2018.01818
  • Ringø, E., Li, X., Doan, H., & Ghosh, K. (2022). Interesting Probiotic Bacteria Other Than the More Widely Used Lactic Acid Bacteria and Bacilli in Finfish. Frontiers in Marine Science, 9, 848037. https://doi.org/10.3389/fmars.2022.848037
  • Ringø, E., & Vadstein, O. (1998). Colonisation of Vibrio Pelagius and Aeromonas caviae in early developing turbot (Scophthalmus maximus L.) larvae. Journal of Applied Microbiology, 84(2), 227–233. https://doi.org/10.1046/j.1365-2672.1998.00333.x
  • Robertson, P. A. W., O’Dowd, C., Burrells, C., Williams, P., & Austin, B. (2000). Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss Walbaum). Aquaculture, 185(3–4), 235–243. https://doi.org/10.1016/S0044-8486(99)00349-X
  • Sakai, M. (1999). Current research status of fish immunostimulants. Aquaculture, 172(1–2), 63–92. https://doi.org/10.1016/S0044-8486(98)00436-0
  • Sakai, M., Yoshida, T., Atsuta, S., & Kobayashi, M. (1995). Enhancement of resistance to vibriosis in rainbow trout, Oncorhynchus mykiss (Walbaum), by oral administration of Clostridium butyricumbacterin. Journal of Fish Diseases, 18(2), 187–190. https://doi.org/10.1111/j.1365-2761.1995.tb00276.x
  • Salinas, I., Abelli, L., Bertoni, F., Picchietti, S., Roque, A., Furones, D., Cuesta, A., Meseguer, J., & Esteban, M. Á. (2008). Monospecies and multispecies probiotic formulations produce different systemic and local immunostimulatory effects in the gilthead seabream (Sparus aurata L.). Fish and Shellfish Immunology, 25(1–2), 114–123. https://doi.org/10.1016/j.fsi.2008.03.011
  • Salmerón, C., Johansson, M., Angotzi, A. R., Rønnestad, I., Jönsson, E., Björnsson, B. T., Gutiérrez, J., Navarro, I., & Capilla, E. (2015). Effects of nutritional status on plasma leptin levels and in vitro regulation of adipocyte leptin expression and secretion in rainbow trout. General & Comparative Endocrinology, 210, 114–123. https://doi.org/10.1016/j.ygcen.2014.10.016
  • Sanchez-Garrido, M. A., & Tena-Sempere, M. (2013). Metabolic control of puberty: Roles of leptin and kisspeptins. Hormones and Behavior, 64(2), 187–194. https://doi.org/10.1016/j.yhbeh.2013.01.014
  • Sewaka, M., Trullas, C., Chotiko, A., Rodkhum, C., Chansue, N., Boonanuntanasarn, S., & Pirarat, N. (2019). Efficacy of synbiotic Jerusalem artichoke and Lactobacillus rhamnosus GG-supplemented diets on growth performance, serum biochemical parameters, intestinal morphology, immune parameters and protection against Aeromonas veronii in juvenile red tilapia (Oreochromis spp.). Fish & Shellfish Immunology, 86, 260–268. https://doi.org/10.1016/j.fsi.2018.11.026
  • Sharifuzzaman, S. M., Abbass, A., Tinsley, J. W., & Austin, B. (2011). Subcellular components of probiotics Kocuria SM1 and Rhodococcus SM2 induce protective immunity in rainbow trout (Oncorhynchus mykiss,Walbaum) against Vibrio anguillarum. Fish and Shellfish Immunology, 30(1), 347–353. https://doi.org/10.1016/j.fsi.2010.11.005
  • Sharifuzzaman, S., Al-Harbi, A., & Austin, B. (2014). Characteristics of growth, digestive system functionality, and stress factors of rainbow trout fed probiotics Kocuria SM1 and Rhodococcus SM2. Aquaculture, 418, 55–61. https://doi.org/10.1016/j.aquaculture.2013.10.006
  • Sharifuzzaman, S., & Austin, B. (2017). Probiotics for disease control in aquaculture. In Diagnosis and Control of Diseases of Fish and Shellfish (pp. 189–222). John Wiley & Sons Inc. https://doi.org/10.1002/9781119152125.ch8
  • Sharma, P., Sihag, R. C., & Gahlawat, S. K. (2013). Relative Efficacy of Two Probiotics in Controlling the Epizootic Ulcerative Syndrome Disease in Mrigal (Cirrhinus mrigala Ham.). Journal of Fisheries and Aquatic Science, 8(2), 305–322. https://doi.org/10.3923/jfas.2013.305.322
  • Shefat, S. H. T. (2018). Probiotic strains used in aquaculture. International Research Journal of Pharmacy, 7, 43–55. https://doi.org/10.14303/irjm.2018.023
  • Sica, M. G., Brugnoni, L. I., Marucci, P. L., & Cubitto, M. A. (2012). Characterisation of probiotic properties of lactic acid bacteria isolated from an estuarine environment for application in rainbow trout (Oncorhynchus mykiss, Walbaum) farming. Antonie Van Leeuwenhoek, 101(4), 869–879. https://doi.org/10.1007/s10482-012-9703-5
  • Sihag, R. C., & Sharma, P. (2012). Probiotics: The new ecofriendly alternative measures of disease control for sustainable aquaculture. Journal of Fisheries and Aquatic Science, 7(2), 72–103. https://doi.org/10.3923/jfas.2012.72.103
  • Simo´n, R., Docando, F., Nuñez-Ortiz, N., Tafalla, C., & D´ıaz-Rosales, P. (2021). Mechanisms Used by Probiotics to Confer Pathogen Resistance to Teleost Fish. Frontiers in Immunology, 12, 653025. https://doi.org/10.3389/fimmu.2021.653025
  • Singh, M. P., Pathak, D., Sharma, G. K., & Sharma, C. S. (2011). Peroxisome proliferator-activated receptors (PPARS): A target with a broad therapeutic potential for human diseases: An overview. Pharmacology, 2, 58–89.
  • Soltani, M., Abdy, E., Alishahi, M., Mirghaed, A. T., & Hosseini-Shekarabi, P. (2017). Growth performance, immune-physiological variables and disease resistance of common carp (Cyprinus carpio) orally subjected to different concentrations of Lactobacillus plantarum. Aquaculture International, 25(5), 1913–1933. https://doi.org/10.1007/s10499-017-0164-8
  • Soomro, A. H., Masud, T., & Anwaar, K. (2001). Role of lactic acid bacteria (LAB) in food preservation and human health – a review. Pakistan Journal of Nutrition, 1(1), 20–24. https://doi.org/10.3923/pjn.2002.20.24
  • Standen, B. T., Rawling, M. D., & Davies, S. J. (2013). Probiotic Pediococcus acidilactici moderates both localised intestinal- and peripheral-immunity in tilapia (Oreochromis niloticus). Fish and Shellfish Immunology, 35(4), 1097–1104. https://doi.org/10.1016/j.fsi.2013.07.018
  • Stienstra, R., Netea-Maier, R. T., Riksen, N. P., Joosten, L. A. B., & Netea, M. G. (2017). Specific and Complex Reprogramming of Cellular Metabolism in Myeloid Cells during Innate Immune Responses. Cell Metabolism, 26(1), 142–156. https://doi.org/10.1016/j.cmet.2017.06.001
  • Strøm, E., & Ringø, E. (1993). Changes in the bacterial composition of early developing cod, Gadus morhua (L.) larvae following inoculation of Lactobacillus plantarum into the water. In B. T. Walther & H. J. Fyhn (Eds.), Physiology and Biochemical Aspects of Fish Development (pp. 226–228). University of Bergen.
  • Sugita, H., Hirose, Y., Matsuo, N., & Deguchi, Y. (1998). Production of the antibacterial substance by Bacillus sp. strain NM12, an intestinal bacterium of Japanese coastal fish. Aquaculture, 165(3–4), 269–280. https://doi.org/10.1016/S0044-8486(98)00267-1
  • Sugita, H., Miyajima, C., & Deguchi, Y. (1991). The vitamin B12-producing ability of the intestinal microflora of freshwater fish. Aquaculture, 92, 267–276. https://doi.org/10.1016/0044-8486(91)90028-6
  • Sugita, H., Takahashi, J., & Deguchi, Y. (1992). Production and consumption of biotin by the intestinal microflora of cultured freshwater fishes. Bioscience, Biotechnology, and Biochemistry, 56(10), 1678–1679. https://doi.org/10.1271/bbb.56.1678
  • Sun, Y., He, M., Cao, Z., Xie, Z., Liu, C., Wang, S., Guo, W., Zhang, X., & Zhou, Y. (2018). Effects of dietary administration of Lactococcus lactis HNL12 on growth, innate immune response, and disease resistance of humpback grouper (Cromileptes altivelis). Fish & Shellfish Immunology, 82, 296–303. https://doi.org/10.1016/j.fsi.2018.08.039
  • Talpur, A. D., Munir, M. B., Mary, A., & Hashim, R. (2014). Dietary probiotics and prebiotics improved food acceptability, growth performance, haematology and immunological parameters and disease resistance against Aeromonas hydrophila in snakehead (Channa striata) fingerlings. Aquaculture, 426–427, 14–20. https://doi.org/10.1016/j.aquaculture.2014.01.013
  • Tan, L.-H., Chan, K.-G., Lee, L.-H., & Goh, B.-H. (2016). Streptomyces Bacteria as Potential Probiotics in Aquaculture. Frontiers in Microbiology, 7, 79. https://doi.org/10.3389/fmicb.2016.00079
  • Tang, H., Liu, Y., Luo, D., Ogawa, S., Yin, Y., Li, S., Zhang, Y., Hu, W., Parhar, I. S., Lin, H., Liu, X., & Cheng, C. H. (2015). The kiss/kissr systems are dispensable for zebrafish reproduction: Evidence from gene knockout studies. Endocrinology, 156(2), 589–599. https://doi.org/10.1210/en.2014-1204
  • Tapia-Paniagua, T. S., Diaz-Rosales, P., Garcia de la Banda, I., Lobo, C., Clavijo, E., Balebona, M. C., & Morinigo, M. A. (2014). Modulation of certain liver fatty acids in Solea senegalensis is influenced by the dietary administration of probiotic microorganisms. Aquaculture, 424, 234–238. https://doi.org/10.1016/j.aquaculture.2014.01.003
  • Tapia-Paniagua, S., Dı́az-Rosales, P., Leóon-Rubio, J., de La, B. I., Lobo, C., Alarcón, F., Chabrillo´n, M., Rosas Ledesma, P., Varela, J. L., Ruiz-Jarabo, I., Arijo, S., Esteban, M. A., Martı´nez-Manzanares, E., Mancera, J. M., Balebona, M. C., & Morin˜igo, M. A. (2012). Use of the probiotic Shewanella putrefaciens Pdp11 on the culture of Senegalese sole (Solea senegalensis, Kaup 1858) and gilthead seabream (Sparus aurata L.). Aquaculture International, 20(6), 1025–1039. https://doi.org/10.1007/s10499-012-9509-5
  • Tarkhani, R., Imani, A., Hoseinifar, S. H., Moghanlou, K. S., & Manaffar, R. (2020). The effects of host-associated Enterococcus faecium CGMCC1.2136 on serum immune parameters, digestive enzymes activity and growth performance of the Caspian roach (Rutilus rutilus caspicus) fingerlings. Aquaculture, 519, 734741. https://doi.org/10.1016/j.aquaculture.2019.734741
  • Tena-Sempere, M. (2007). Roles of ghrelin and leptin in the control of reproductive function. Neuroendocrinology, 86(3), 229–241. https://doi.org/10.1159/000108410
  • Thankappan, B., Ramesh, D., Ramkumar, S., Natarajaseenivasan, K., & Anbarasu, K. (2015). Characterization of Bacillus spp. From the Gastrointestinal Tract of Labeo rohita—Towards to Identify Novel Probiotics Against Fish Pathogens. Applied Biochemistry and Biotechnology, 175(1), 340–353. https://doi.org/10.1007/s12010-014-1270-y
  • Thy, H. T. T., Tri, N. N., Quy, O. M., Fotedar, R., Kannika, K., Unajak, S., & Areechon, N. (2017). Effects of the dietary supplementation of mixed probiotic spores of Bacillus amyloliquefaciens 54A, and Bacillus pumilus 47B on growth, innate immunity and stress responses of striped catfish (Pangasianodon hypophthalmus). Fish & Shellfish Immunology, 60, 391–399. https://doi.org/10.1016/j.fsi.2016.11.016
  • Tinoco, A. B., Näslund, J., Delgado, M. J., de Pedro, N., Johnsson, J. I., & Jönsson, E. (2014). Ghrelin increases food intake, swimming activity and growth in juvenile brown trout (Salmo trutta). Physiology & Behavior, 124, 15–22. https://doi.org/10.1016/j.physbeh.2013.10.034
  • Tomova, A., Ivanova, L., Buschmann, A. H., Rioseco, M. L., Kalsi, R. K., Godfrey, H. P., & Cabello, F. C. (2015). Antimicrobial resistance genes in marine bacteria and human uropathogenicEscherichia colifrom a region of intensive aquaculture. Environmental microbiology reports, 7(5), 803–809. https://doi.org/10.1111/1758-2229.12327
  • Toranzo, A. E., Magariños, B., & Romalde, J. L. (2005). A review of the main bacterial fish diseases in mariculture systems. Aquaculture, 246(1–4), 37–61. https://doi.org/10.1016/j.aquaculture.2005.01.002
  • Unniappan, S. Ghrelin: An emerging player in the regulation of reproduction in non-mammalian vertebrates. (2010). General & Comparative Endocrinology, 167(3), 340–343. Review. https://doi.org/10.1016/j.ygcen.2009.12.003
  • Van Doan, H., Hoseinifar, S. H., Dawood, M. A. O., Chitmanat, C., & Tayyamath, K. (2017). Effects of Cordyceps militaris spent mushroom substrate and Lactobacillus plantarum on mucosal, serum immunology and growth performance of Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 70, 87–94. https://doi.org/10.1016/j.fsi.2017.09.002
  • Van Doan, H., Hoseinifar, S. H., Ringø, E., Angeles Esteban, M., Dadar, M., Dawood, M. A. O., & Faggio, C. (2019). Host-associated probiotics: A key factor in sustainable aquaculture. Reviews in Fisheries Science & Aquaculture, 28(1), 16–42. https://doi.org/10.1080/23308249.2019.1643288
  • Van Doan, H., Hoseinifar, S. H., Tapingkae, W., Seel-Audom, M., Jaturasitha, S., Dawood, M. A., Wongmaneeprateep, S., Thu, T. T. N., & MÁ, E. (2020). Boosted growth performance, mucosal and serum immunity, and disease resistance Nile tilapia (Oreochromis niloticus) fingerlings using corncob-derived xylooligosaccharide and Lactobacillus plantarum CR1T5. Probiotics and Antimicrobial Proteins, 12(2), 400–411. https://doi.org/10.1007/s12602-019-09554-5
  • Verschuere, L., Rombaut, G., Sorgeloos, P., & Verstraete, W. (2000). Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews: MMBR, 64(4), 655–671. https://doi.org/10.1128/mmbr.64.4.655-671.2000
  • Vine, N. G., Leukes, W. D., & Kaiser, H. (2004). In vitro growth characteristics of five candidate aquaculture probiotics and two fish pathogens grown in fish intestinal mucus. FEMS Microbiology Letters, 231(1), 145–152. https://doi.org/10.1016/S0378-1097(03)00954-6
  • Vine, N. G., Leukes, W. D., & Kaiser, H. (2006). Probiotics in marine larviculture. FEMS Microbiology Reviews, 30(3), 404–427. https://doi.org/10.1111/j.1574-6976.2006.00017.x
  • Vine, N. G., Leukes, W. D., Kaiser, H., Daya, S., Baxter, J., & Hecht, T. (2004). Competition for attachment of aquaculture candidate probiotic and pathogenic bacteria on fish intestinal mucus. Journal of Fish Diseases, 27(6), 319–326. https://doi.org/10.1111/j.1365-2761.2004.00542.x
  • Wang, Y. B., & Gu, Q. (2010). Effect of probiotics on white shrimp (Penaeus vannamei) growth performance and immune response. Marine Biology Research, 6(3), 327–332. https://doi.org/10.1080/17451000903300893
  • Wang, X., Li, H., Zhang, X., Li, Y., Ji, W., & Xu, H. (2000). Microbial flora in the digestive tract of adult penaeid shrimp (Penaeus chinensis). The Journal of Ocean University of China, 30(3), 493–498.
  • Wang, X., Sun, Y., Wang, L., Li, X., Qu, K., & Xu, Y. (2017). Synbiotic dietary supplement affects growth, immune responses and intestinal microbiota of Apostichopus japonicus. Fish & Shellfish Immunology, 68, 232–242. https://doi.org/10.1016/j.fsi.2017.07.027
  • Wanka, K. M., Damerau, T., Costas, B., Krueger, A., Schulz, C., & Wuertz, S. (2018). Isolation and characterisation of native probiotics for fish farming. BMC Microbiology, 18(1), 119. https://doi.org/10.1186/s12866-018-1260-2
  • Wei, L. S., Goh, K. W., Abdul Hamid, N. K., Abdul Kari, Z., Wee, W., & Van Doan, H. (2022). A mini-review on co-supplementation of probiotics and medicinal herbs: Application in aquaculture. Frontiers in Veterinary Science, 9, 869564. https://doi.org/10.3389/fvets.2022.869564
  • WHO. Global action plan on antimicrobial resistance. 2015. Retrieved May 2, 2023. https://www.who.int/publications/i/item/9789241509763
  • Won, E. T., & Borski, R. J. (2013). Endocrine regulation of compensatory growth in fish. Frontiers in Endocrinology, 4(4), 74. https://doi.org/10.3389/fendo.2013.00074
  • Wuertz, S., Schroeder, A., & Wanka, K. M. (2021). Probiotics in Fish Nutrition—Long-Standing Household Remedy or Native Nutraceuticals? Water, 13(10), 1348. https://doi.org/10.3390/w13101348
  • Xia, Y., Lu, M., Chen, G., Cao, J., Gao, F., Wang, M., Liu, Z., Zhang, D., Zhu, H., & Yi, M. (2018). Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. Lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immunology, 76, 368–379. https://doi.org/10.1016/j.fsi.2018.03.020
  • Xie, Z., Guo, W., & Zhou, Y. (2017). Dietary administration of Bacillus subtilis HAINUP40 enhances growth, digestive enzyme activities, innate immune responses and disease resistance of tilapia, Oreochromis niloticus. Fish & Shellfish Immunology, 60, 326–333. https://doi.org/10.1016/j.fsi.2016.12.003/
  • Xiong, W., Sun, Y., Zhang, T., Ding, X., Li, Y., Wang, M., & Zeng, Z. (2015). Antibiotics, Antibiotic Resistance Genes, and Bacterial Community Composition in Fresh Water Aquaculture Environment in China. Microbial ecology, 70(2), 425–432. https://doi.org/10.1007/s00248-015-0583-x
  • Yu, L., Zhai, Q., Zhu, J., Zhang, C., Li, T., Liu, X., Zhao, J., Zhang, H., Tian, F., & bChen, W. (2017). Dietary Lactobacillus plantarum supplementation enhances growth performance and alleviates aluminum toxicity in tilapia. Ecotoxicology & Environmental Safety, 143, 307–314. https://doi.org/10.1016/j.ecoenv.2017.05.023
  • Zaher, H. A., Nofal, M. I., Hendam, B. M., Elshaer, M. M., Alothaim, A. S., & Eraqi, M. M. (2021). Prevalence and antibiogram of Vibrio parahaemolyticus and Aeromonas hydrophila in the flesh of Nile tilapia, with special reference to their virulence genes detected using multiplex PCR technique. Antibiotics (Basel), 10(6), 654. https://doi.org/10.3390/antibiotics10060654
  • Zhai, Q., Wang, H., Tian, F., Zhao, J., Zhang, H., & Chen, W. (2017). Dietary Lactobacillus plantarum supplementation decreases tissue lead accumulation and alleviates lead toxicity in Nile tilapia (Oreochromis niloticus). Aquaculture Research, 48(9), 5094–5103. https://doi.org/10.1111/are.13326
  • Zhang, C.-N., Zhang, J.-L., Guan, W.-C., Zhang, X.-F., Guan, S.-H., Zeng, Q.-H., Cheng, G. F., & Cui, W. (2017). Effects of Lactobacillus delbrueckii on immune response, disease resistance against Aeromonas hydrophila, antioxidant capability and growth performance of Cyprinus carpio Huanghe var. Fish & Shellfish Immunology, 68, 84–91. https://doi.org/10.1016/j.fsi.2017.07.012
  • Zohar, Y., Muñoz-Cueto, J. A., Elizur, A., & Kah, O. Neuroendocrinology of reproduction in teleost fish. (2009). General & Comparative Endocrinology, 165(3), 438–455. Review. https://doi.org/10.1016/j.ygcen.2009.04.017
  • Zorriehzahra, M. J., Delshad, S. T., Adel, M., Tiwari, R., Karthik, K., Dhama, K., & Lazado, C. C. (2016). Probiotics as beneficial microbes in aquaculture: An update on their multiple modes of action: A review. The Veterinary Quarterly, 36(4), 228–241. https://doi.org/10.1080/01652176.2016.1172132