1,670
Views
1
CrossRef citations to date
0
Altmetric
Food Science & Technology

A comprehensive review of the therapeutic potential of citrus bioflavonoid hesperidin against lifestyle-related disorders

, ORCID Icon, ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Article: 2226427 | Received 21 Feb 2023, Accepted 13 Jun 2023, Published online: 04 Jul 2023

References

  • Abd Elhakim, Y. M., Ghoneim, M. H., Khairy, M. H., & Eissa, S. A. (2020). Single or combined protective and therapeutic impact of taurine and hesperidin on carbon tetrachloride-induced acute hepatic injury in rat. Environmental Science and Pollution Research, 27(12), 13180–30. https://doi.org/10.1007/s11356-020-07895-1
  • Abdel-Sttar, A. R., Khalaf, M. M., Aboyoussef, A. M., & Abosaif, A. (2017). Ameliorative effect of hesperidin on carbon tetrachloride induced liver fibrosis in rats. International Journal of Pharmacy and Pharmaceutical Sciences, 9(7), 45–51. https://doi.org/10.22159/ijpps.2017v9i7.17611
  • Abdulaziz Ahmeedah Rabee, A., & Bennasir, H. (2018). Hesperidin an antioxidant flavonoid prevents carbon tetrachloride-induced hepatic toxicity in male albino rats. JIPBS, 5, 127–132. https://jipbs.com/index.php/journal/article/view/350
  • Adan, A., & Baran, Y. (2016). Fisetin and hesperetin induced apoptosis and cell cycle arrest in chronic myeloid leukemia cells accompanied by modulation of cellular signaling. Tumor Biology, 37(5), 5781–5795. https://doi.org/10.1007/s13277-015-4118-3
  • Adem, S., Eyupoglu, V., Sarfraz, I., Rasul, A., & Ali, M. (2020). Identification of potent COVID-19 main protease (Mpro) inhibitors from natural polyphenols: An in silico strategy unveils a hope against CORONA.
  • Ahmed, O., Fahim, H., Mahmoud, A., & Ahmed, E. A. E. (2018). Bee venom and hesperidin effectively mitigate complete Freund’s adjuvant-induced arthritis via immunomodulation and enhancement of antioxidant defense system. Archives of Rheumatology, 33(2), 198. https://doi.org/10.5606/ArchRheumatol.2018.6519
  • Ajuwon, O. R., Oguntibeju, O. O., & Marnewick, J. L. (2014). Amelioration of lipopolysaccharide-induced liver injury by aqueous rooibos (Aspalathus linearis) extract via inhibition of pro-inflammatory cytokines and oxidative stress. BMC Complementary and Alternative Medicine, 14(1), 1–12. https://doi.org/10.1186/1472-6882-14-392
  • Akiyama, S., Katsumata, S.-I., Suzuki, K., Ishimi, Y., Wu, J., & Uehara, M. (2009). Dietary hesperidin exerts hypoglycemic and hypolipidemic effects in streptozotocin-induced marginal type 1 diabetic rats. Journal of Clinical Biochemistry and Nutrition, 46(1), 87–92. https://doi.org/10.3164/jcbn.09-82
  • Al-Rikabi, R., Al-Shmgani, H., Dewir, Y. H., & El-Hendawy, S. (2020). In Vivo and in vitro evaluation of the protective effects of hesperidin in lipopolysaccharide-induced inflammation and cytotoxicity of cell. Molecules, 25(3), 478. https://doi.org/10.3390/molecules25030478
  • Amaretti, A., Raimondi, S., Leonardi, A., Quartieri, A., & Rossi, M. (2015). Hydrolysis of the rutinose-conjugates flavonoids rutin and hesperidin by the gut microbiota and bifidobacteria. Nutrients, 7(4), 2788–2800. https://doi.org/10.3390/nu7042788
  • Amiot, M., Riva, C., & Vinet, A. (2016). Effects of dietary polyphenols on metabolic syndrome features in humans: A systematic review. Obesity Reviews, 17(7), 573–586. https://doi.org/10.1111/obr.12409
  • Antunes, M. S., Goes, A. T., Boeira, S. P., Prigol, M., & Jesse, C. R. (2014). Protective effect of hesperidin in a model of Parkinson’s disease induced by 6-hydroxydopamine in aged mice. Nutrition, 30(11–12), 1415–1422. https://doi.org/10.1016/j.nut.2014.03.024
  • Aranaz, P., Navarro-Herrera, D., Zabala, M., Miguéliz, I., Romo-Hualde, A., López-Yoldi, M., Martínez, J., Vizmanos, J., Milagro, F., & González-Navarro, C. (2019). Phenolic compounds inhibit 3T3-L1 adipogenesis depending on the stage of differentiation and their binding affinity to PPARγ. Molecules, 24(6), 1045. https://doi.org/10.3390/molecules24061045
  • Aschoff, J. K., Kaufmann, S., Kalkan, O., Neidhart, S., Carle, R., & Schweiggert, R. M. (2015). In vitro bioaccessibility of carotenoids, flavonoids, and vitamin C from differently processed oranges and orange juices [Citrus sinensis (L.) Osbeck]. Journal of Agricultural and Food Chemistry, 63(2), 578–587. https://doi.org/10.1021/jf505297t
  • Aschoff, J. K., Riedl, K. M., Cooperstone, J. L., Högel, J., Bosy‐Westphal, A., Schwartz, S. J., Carle, R., & Schweiggert, R. M. (2016). Urinary excretion of citrus flavanones and their major catabolites after consumption of fresh oranges and pasteurized orange juice: A randomized cross‐over study. Molecular Nutrition & Food Research, 60(12), 2602–2610. https://doi.org/10.1002/mnfr.201600315
  • Assini, J. M., Mulvihill, E. E., & Huff, M. W. (2013). Citrus flavonoids and lipid metabolism. Current Opinion in Lipidology, 24(1), 34–40. https://doi.org/10.1097/MOL.0b013e32835c07fd
  • Badalzadeh, R., Mohammadi, M., Yousefi, B., Farajnia, S., Najafi, M., & Mohammadi, S. (2015). Involvement of glycogen synthase kinase-3β and oxidation status in the loss of cardioprotection by postconditioning in chronic diabetic male rats. Advanced Pharmaceutical Bulletin, 5(3), 321. https://doi.org/10.15171/apb.2015.045
  • Bakhautdin, B., Das, D., Mandal, P., Roychowdhury, S., Danner, J., Bush, K., Pollard, K., Kaspar, J. W., Li, W., Salomon, R. G., McMullen, M. R., & Nagy, L. E. (2014). Protective role of HO-1 and carbon monoxide in ethanol-induced hepatocyte cell death and liver injury in mice. Journal of Hepatology, 61(5), 1029–1037. https://doi.org/10.1016/j.jhep.2014.06.007
  • Bal‐Price, A., Matthias, A., & Brown, G. C. (2002). Stimulation of the NADPH oxidase in activated rat microglia removes nitric oxide but induces peroxynitrite production. Journal of Neurochemistry, 80(1), 73–80. https://doi.org/10.1046/j.0022-3042.2001.00675.x
  • Bansal, K., Singh, V., Singh, S., & Mishra, S. (2023 Mar 20). Neuroprotective potential of hesperidin as therapeutic agent in the treatment of brain disorders: Preclinical evidence-based review. Current Molecular Medicine, 23, https://doi.org/10.2174/1566524023666230320144722
  • Barreca, D., Gattuso, G., Bellocco, E., Calderaro, A., Trombetta, D., Smeriglio, A., Laganà, G., Daglia, M., Meneghini, S., & Nabavi, S. M. (2017). Flavanones: Citrus phytochemical with health‐promoting properties. BioFactors, 43(4), 495–506. https://doi.org/10.1002/biof.1363
  • Beigmohammadi, M. T., Bitarafan, S., Hoseindokht, A., Abdollahi, A., Amoozadeh, L., Mahmoodi Ali Abadi, M., & Foroumandi, M. (2020). Impact of vitamins A, B, C, D, and E supplementation on improvement and mortality rate in ICU patients with coronavirus-19: A structured summary of a study protocol for a randomized controlled trial. Trials, 21(1), 1–4. https://doi.org/10.1186/s13063-020-04547-0
  • Birsu Cincin, Z., Unlu, M., Kiran, B., Sinem Bireller, E., Baran, Y., & Cakmakoglu, B. (2015). Anti-proliferative, apoptotic and signal transduction effects of hesperidin in non-small cell lung cancer cells. Cellular Oncology, 38(3), 195–204. https://doi.org/10.1007/s13402-015-0222-z
  • Borges, G., Lean, M. E., Roberts, S. A., & Crozier, A. (2013). Bioavailability of dietary (poly) phenols: A study with ileostomists to discriminate between absorption in small and large intestine. Food & Function, 4(5), 754–762. https://doi.org/10.1039/c3fo60024f
  • Brand, W., Shao, J., Hoek Van Den Hil, E. F., Van Elk, K. N., Spenkelink, B., De Haan, L. H., Rein, M. J., Dionisi, F., Williamson, G., Van Bladeren, P. J., & Rietjens, I. M. C. M. (2010). Stereoselective conjugation, transport and bioactivity of S - and R -hesperetin enantiomers in vitro. Journal of Agricultural and Food Chemistry, 58(10), 6119–6125. https://doi.org/10.1021/jf1008617
  • Brett, G. M., Hollands, W., Needs, P. W., Teucher, B., Dainty, J. R., Davis, B. D., Brodbelt, J. S., & Kroon, P. A. (2008). Absorption, metabolism and excretion of flavanones from single portions of orange fruit and juice and effects of anthropometric variables and contraceptive pill use on flavanone excretion. British Journal of Nutrition, 101(5), 664–675. https://doi.org/10.1017/S000711450803081X
  • Carlos Filho, B., Del Fabbro, L., de Gomes, M. G., Goes, A. T., Souza, L. C., Boeira, S. P., & Jesse, C. R. (2013). Kappa-opioid receptors mediate the antidepressant-like activity of hesperidin in the mouse forced swimming test. European Journal of Pharmacology, 698(1–3), 286–291. https://doi.org/10.1016/j.ejphar.2012.11.003
  • Cavezzi, A., Troiani, E., & Corrao, S. (2020). COVID-19: Hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clinics and Practice, 10(2), 1271. https://doi.org/10.4081/cp.2020.1271
  • Çetin, A., Çiftçi, O., & Otlu, A. (2016). Protective effect of hesperidin on oxidative and histological liver damage following carbon tetrachloride administration in Wistar rats. Archives of Medical Science, 12(3), 486–493. https://doi.org/10.5114/aoms.2015.49484
  • Chagwedera, D. N., Ang, Q. Y., Bisanz, J. E., Leong, Y. A., Ganeshan, K., Cai, J., Patterson, A. D., Turnbaugh, P. J., & Chawla, A. (2019). Nutrient sensing in CD11c cells alters the gut microbiota to regulate food intake and body mass. Cell Metabolism, 30(2), 364–373.e7. https://doi.org/10.1016/j.cmet.2019.05.002
  • Chambers, C. S., Biedermann, D., Valentová, K., Petrásková, L., Viktorová, J., Kuzma, M., & Křen, V. (2019). Preparation of retinoyl-flavonolignan hybrids and their antioxidant properties. Antioxidants, 8(7), 236. https://doi.org/10.3390/antiox8070236
  • Chen, S.-Y., Chyau, C.-C., Chu, C.-C., Chen, Y.-H., Chen, T.-H., & Duh, P.-D. (2013). Hepatoprotection using sweet orange peel and its bioactive compound, hesperidin, for CCl4-induced liver injury in vivo. Journal of Functional Foods, 5(4), 1591–1600. https://doi.org/10.1016/j.jff.2013.07.001
  • Chen, X., Wei, W., Li, Y., Huang, J., & Ci, X. (2019). Hesperetin relieves cisplatin-induced acute kidney injury by mitigating oxidative stress, inflammation and apoptosis. Chemico-Biological Interactions, 308, 269–278. https://doi.org/10.1016/j.cbi.2019.05.040
  • Cheraghpour, M., Imani, H., Ommi, S., Alavian, S. M., Karimi-Shahrbabak, E., Hedayati, M., Yari, Z., & Hekmatdoost, A. (2019, August). Hesperidin improves hepatic steatosis, hepatic enzymes, and metabolic and inflammatory parameters in patients with nonalcoholic fatty liver disease: A randomized, placebo-controlled, double-blind clinical trial. Phytotherapy Research: PTR, 33(8), 2118–2125. https://doi.org/10.1002/ptr.6406
  • Ciftci, O., Ozcan, C., Kamisli, O., Cetin, A., Basak, N., & Aytac, B. (2015). Hesperidin, a citrus flavonoid, has the ameliorative effects against experimental autoimmune encephalomyelitis (EAE) in a C57BL/J6 mouse model. Neurochemical Research, 40(6), 1111–1120. https://doi.org/10.1007/s11064-015-1571-8
  • Colleluori, G., Aguirre, L., Phadnis, U., Fowler, K., Armamento-Villareal, R., Sun, Z., Brunetti, L., Park, J. H., Kaipparettu, B. A., Putluri, N., Auetumrongsawat, V., Yarasheski, K., Qualls, C., & Villareal, D. T. (2019). Aerobic plus resistance exercise in obese older adults improves muscle protein synthesis and preserves myocellular quality despite weight loss. Cell Metabolism, 30(2), 261–273. e266. https://doi.org/10.1016/j.cmet.2019.06.008
  • Constantin, R. P., Nascimento, G. S. D., Constantin, R. P., Salgueiro, C. L., Bracht, A., Ishii-Iwamoto, E. L., Yamamoto, N. S., & Constantin, J. (2013). Citrus flavanones affect hepatic fatty acid oxidation in rats by acting as prooxidant agents. BioMed Research International, 2013, 1–12. https://doi.org/10.1155/2013/342973
  • Corrêa, T. A. F., Rogero, M. M., Hassimotto, N. M. A., & Lajolo, F. M. (2019). The two-way polyphenols-microbiota interactions and their effects on obesity and related metabolic diseases. Frontiers in Nutrition, 6. Frontiers in nutrition, 188. https://doi.org/10.3389/fnut.2019.00188
  • Coull, J. A., Beggs, S., Boudreau, D., Boivin, D., Tsuda, M., Inoue, K., Gravel, C., Salter, M. W., & De Koninck, Y. (2005). BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature, 438(7070), 1017–1021. https://doi.org/10.1038/nature04223
  • Dalan, R., Bornstein, S. R., El-Armouche, A., Rodionov, R. N., Markov, A., Wielockx, B., Beuschlein, F., & Boehm, B. O. (2020). The ACE-2 in COVID-19: Foe or friend? Hormone and Metabolic Research, 52(5), 257–263. https://doi.org/10.1055/a-1155-0501
  • DaRocha-Souto, B., Coma, M., Perez-Nievas, B., Scotton, T., Siao, M., Sánchez-Ferrer, P., Hashimoto, T., Fan, Z., Hudry, E., Barroeta, I., Serenó, L., Rodríguez, M., Sánchez, M. B., Hyman, B. T., & Gómez-Isla, T. (2012). Activation of glycogen synthase kinase-3 beta mediates β-amyloid induced neuritic damage in Alzheimer’s disease. Neurobiology of Disease, 45(1), 425–437. https://doi.org/10.1016/j.nbd.2011.09.002
  • Das, S., Sarmah, S., Lyndem, S., & Singha Roy, A. (2021). An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. Journal of Biomolecular Structure and Dynamics, 39(9), 3347–3357. https://doi.org/10.1080/07391102.2020.1763201
  • Delgado-Roche, L., & Mesta, F. (2020). Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Archives of Medical Research, 51(5), 384–387. https://doi.org/10.1016/j.arcmed.2020.04.019
  • Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P., Tognolini, M., Borges, G., & Crozier, A. (2013). Dietary (poly) phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants & Redox Signaling, 18(14), 1818–1892. https://doi.org/10.1089/ars.2012.4581
  • Dhingra, A. K., Chopra, B., Rathi, V., & Sapra, S. (2022). Hesperidin: A potential therapeutic agent against COVID-19. Current Drug Discovery Technologies, 20(2). https://doi.org/10.2174/1570163820666221017111556/
  • Dhingra, A. K., Chopra, B., Rathi, V., & Sapra, S. (2023). Hesperidin: A potential therapeutic agent against COVID-19. Current Drug Discovery Technologies, 20(2), 1–8. https://doi.org/10.2174/1570163820666221017111556
  • Dokumacioglu, E., Iskender, H., & Musmul, A. (2019). Effect of hesperidin treatment on α-Klotho/FGF-23 pathway in rats with experimentally-induced diabetes. Biomedicine & Pharmacotherapy, 109, 1206–1210. https://doi.org/10.1016/j.biopha.2018.10.192
  • Do Nascimento, G. S., Constantin, R. P., Gilglioni, E. H., de Castro Ghizoni, C. V., Bracht, A., Utsunomiya, K. S., Yamamoto, N. S., Ishii-Iwamoto, E. L., Constantin, J., & Constantin, R. P. (2018a). The acute effects of citrus flavanones on the metabolism of glycogen and monosaccharides in the isolated perfused rat liver. Toxicology Letters, 291, 158–172. https://doi.org/10.1016/j.toxlet.2018.04.001/
  • Donovan, J. L., Crespy, V., Oliveira, M., Cooper, K. A., Gibson, B. B., & Williamson, G. (2006). (+)-Catechin is more bioavailable than (−)-catechin: Relevance to the bioavailability of catechin from cocoa. Free Radical Research, 40(10), 1029–1034. https://doi.org/10.1080/10715760600868545
  • Du, G. Y., He, S. W., Zhang, L., Sun, C. X., Mi, L. D., & Sun, Z. G. (2018). Hesperidin exhibits in vitro and in vivo antitumor effects in human osteosarcoma MG‑63 cells and xenograft mice models via inhibition of cell migration and invasion, cell cycle arrest and induction of mitochondrial‑mediated apoptosis. Oncology Letters, 16(5), 6299–6306. https://doi.org/10.3892/ol.2018.9439
  • Duran, Y., & Karaboğa, İ. (2020). Effect of hesperetin on systemic inflammation and hepatic injury after blunt chest trauma in rats. Biotechnic & Histochemistry, 95(4), 297–304. https://doi.org/10.1080/10520295.2019.1691265
  • Duranoğlu, D., Uzunoglu, D., Mansuroglu, B., Arasoglu, T., & Derman, S. (2018). Synthesis of hesperetin-loaded PLGA nanoparticles by two different experimental design methods and biological evaluation of optimized nanoparticles. Nanotechnology, 29(39), 395603. https://doi.org/10.1088/1361-6528/aad111
  • El-Kersh, D. M., Ezzat, S. M., Salama, M. M., Mahrous, E. A., Attia, Y. M., Ahmed, M. S., & Elmazar, M. M. (2021). Anti-estrogenic and anti-aromatase activities of citrus peels major compounds in breast cancer. Scientific Reports, 11(1), 7121. https://doi.org/10.1038/s41598-021-86599-z
  • El, A. E.-D. E.-S., Sokar, S. S., Shebl, A. M., & Mohamed, D. Z. (2017). Antifibrotic effect of diethylcarbamazine combined with hesperidin against ethanol induced liver fibrosis in rats. Biomedicine & Pharmacotherapy, 89, 1196–1206. https://doi.org/10.1016/j.biopha.2017.03.013
  • Erlund, I. (2004). Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutrition Research, 24(10), 851–874. https://doi.org/10.1016/j.nutres.2004.07.005
  • Estruel-Amades, S., Massot-Cladera, M., Garcia-Cerdà, P., Pérez-Cano, F. J., Franch, À., Castell, M., & Camps-Bossacoma, M. (2019). Protective effect of hesperidin on the oxidative stress induced by an exhausting exercise in intensively trained rats. Nutrients, 11(4), 783. https://doi.org/10.3390/nu11040783
  • Farzaei, M. H., Shahpiri, Z., Bahramsoltani, R., Rahimi, F., Najafi, R., & Rahimi, R. (2017). Efficacy and tolerability of phytomedicines in multiple sclerosis patients: A review. CNS Drugs, 31(10), 867–889. https://doi.org/10.1007/s40263-017-0466-4
  • Feng, Q., & Li, Z. (2006). The causation and correlative disease of obesity and losing weight. Med Philosophy (B), 27(5), 65–69.
  • Fernández‐Bedmar, Z., Anter, J., Alonso‐Moraga, A., Martín de las Mulas, J., Millán‐Ruiz, Y., & Guil‐Luna, S. (2017). Demethylating and anti‐hepatocarcinogenic potential of hesperidin, a natural polyphenol of Citrus juices. Molecular Carcinogenesis, 56(6), 1653–1662. https://doi.org/10.1002/mc.22621
  • Ferreira, P. S., Spolidorio, L. C., Manthey, J. A., & Cesar, T. B. (2016). Citrus flavanones prevent systemic inflammation and ameliorate oxidative stress in C57BL/6J mice fed high-fat diet. Food & Function, 7(6), 2675–2681. https://doi.org/10.1039/C5FO01541C
  • Franke, S. I., Molz, P., Mai, C., Ellwanger, J. H., Zenkner, F. F., Horta, J. A., & Prá, D. (2018). Influence of hesperidin and vitamin C on glycemic parameters, lipid profile, and DNA damage in rats treated with sucrose overload. Anais da Academia Brasileira de Ciências, 90(2 suppl 1), 2203–2210. https://doi.org/10.1590/0001-3765201820170751
  • Ghorbani, A., Nazari, M., Jeddi-Tehrani, M., & Zand, H. (2012). The citrus flavonoid hesperidin induces p53 and inhibits NF-κB activation in order to trigger apoptosis in NALM-6 cells: Involvement of PPARγ-dependent mechanism. European Journal of Nutrition, 51(1), 39–46. https://doi.org/10.1007/s00394-011-0187-2
  • Girdhar, S., Girdhar, A., Verma, S. K., Lather, V., & Pandita, D. (2015). Plant derived alkaloids in major neurodegenerative diseases: From animal models to clinical trials. Journal of Ayurvedic and Herbal Medicine, 1(3), 91–100. https://doi.org/10.31254/jahm.2015.1307
  • Gómez-Zorita, S., Lasa, A., Abendaño, N., Fernández-Quintela, A., Mosqueda-Solís, A., Garcia-Sobreviela, M. P., Arbonés-Mainar, J. M., & Portillo, M. P. (2017). Phenolic compounds apigenin, hesperidin and kaempferol reduce in vitro lipid accumulation in human adipocytes. Journal of Translational Medicine, 15(1), 1–10. https://doi.org/10.1186/s12967-017-1343-0
  • Gu, S.-F., Wang, L.-Y., Tian, Y.-J., Zhou, Z.-X., Tang, J.-B., Liu, X.-R., Jiang, H.-P., & Shen, Y.-Q. (2019). Enhanced water solubility, antioxidant activity, and oral absorption of hesperetin by D-α-tocopheryl polyethylene glycol 1000 succinate and phosphatidylcholine. Journal of Zhejiang University-SCIENCE B, 20(3), 273–281. https://doi.org/10.1631/jzus.B1800346
  • Habibyar, A. F., Sharma, N., & Khurana, N. (2016). PASS assisted prediction and pharmacological evaluation of hesperidin against scopolamine induced amnesia in mice. European Journal of Pharmacology, 789, 385–394. https://doi.org/10.1016/j.ejphar.2016.07.013
  • Haghmorad, D., Mahmoudi, M. B., Salehipour, Z., Jalayer, Z., Kokhaei, M., Rastin, P., Mahmoudi, M., & Mahmoudi, M. (2017). Hesperidin ameliorates immunological outcome and reduces neuroinflammation in the mouse model of multiple sclerosis. Journal of Neuroimmunology, 302, 23–33. https://doi.org/10.1016/j.jneuroim.2016.11.009
  • Hajialyani, M., Hosein Farzaei, M., Echeverría, J., Nabavi, S. M., Uriarte, E., & Sobarzo-Sánchez, E. (2019). Hesperidin as a neuroprotective agent: A review of animal and clinical evidence. Molecules, 24(3), 648. https://doi.org/10.3390/molecules24030648
  • Halim, A., Nur, N. M., El-Agamy, E.-S., & Ibrahim, A. (2017). Protective effect of hesperidin (HDN) on carbon tetrachloride (CCl4)-induced hepatic toxicity in male albino rats. AIJCR, 8(11), 20328–20338. https://doi.org/10.15520/ijcrr/2017/8/11/349
  • Hamdy, S. M., Shabaan, A. M., Latif, A. K. M. A., Abdel-Aziz, A. M., & Amin, A. M. (2017). Protective effect of hesperidin and tiger nut against acrylamide toxicity in female rats. Experimental and Toxicologic Pathology, 69(8), 580–588. https://doi.org/10.1016/j.etp.2017.05.004
  • Hassan, A. A., Thabet, N. M., & Abdel-Rafei, M. K. (2018). Hyaluronan as a mediator for the hepatoprotective effect of Diosmin/Hesperidin complex. Pakistan Journal of Pharmaceutical Sciences, 31(4).
  • Hati, S., & Bhattacharyya, S. (2020). Impact of thiol–Disulfide balance on the binding of COVID-19 spike protein with angiotensin-converting enzyme 2 receptor. ACS Omega, 5(26), 16292–16298. https://doi.org/10.1021/acsomega.0c02125
  • Hemanth Kumar, B., Dinesh Kumar, B., & Diwan, P. V. (2017). Hesperidin, a citrus flavonoid, protects against l-methionine-induced hyperhomocysteinemia by abrogation of oxidative stress, endothelial dysfunction and neurotoxicity in Wistar rats. Pharmaceutical Biology, 55(1), 146–155. https://doi.org/10.1080/13880209.2016.1231695
  • He, S., Wang, X., Zhong, Y., Tang, L., Zhang, Y., Ling, Y., Tan, Z., Yang, P., & Chen, A. (2017). Hesperetin post-treatment prevents rat cardiomyocytes from hypoxia/reoxygenation injury in vitro via activating PI3K/Akt signaling pathway. Biomedicine & Pharmacotherapy, 91, 1106–1112. https://doi.org/10.1016/j.biopha.2017.05.003
  • Jack, B. U., Malherbe, C. J., Willenburg, E. L., de Beer, D., Huisamen, B., Joubert, E., Muller, C. J., Louw, J., & Pheiffer, C. (2018). Polyphenol-enriched fractions of cyclopia intermedia selectively affect lipogenesis and Lipolysis in 3T3-L1 adipocytes. Planta medica, 84(2), 100–110. https://doi.org/10.1055/s-0043-119463
  • Javed, H., Vaibhav, K., Ahmed, M. E., Khan, A., Tabassum, R., Islam, F., Safhi, M. M., & Islam, F. (2015). Effect of hesperidin on neurobehavioral, neuroinflammation, oxidative stress and lipid alteration in intracerebroventricular streptozotocin induced cognitive impairment in mice. Journal of the Neurological Sciences, 348(1–2), 51–59. https://doi.org/10.1016/j.jns.2014.10.044
  • Jiao, Q., Xu, L., Jiang, L., Jiang, Y., Zhang, J., & Liu, B. (2020). Metabolism study of hesperetin and hesperidin in rats by UHPLC-LTQ-Orbitrap MS n. Xenobiotica, 50(11), 1311–1322. https://doi.org/10.1080/00498254.2019.1567956
  • Jiménez-Aliaga, K., Bermejo-Bescós, P., Benedí, J., & Martín-Aragón, S. (2011). Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sciences, 89(25–26), 939–945. https://doi.org/10.1016/j.lfs.2011.09.023
  • Jo, S. H., Kim, M. E., Cho, J. H., Lee, Y., Lee, J., Park, Y.-D., & Lee, J. S. (2019). Hesperetin inhibits neuroinflammation on microglia by suppressing inflammatory cytokines and MAPK pathways. Archives of Pharmacal Research, 42(8), 695–703. https://doi.org/10.1007/s12272-019-01174-5
  • Joshi, R. S., Jagdale, S. S., Bansode, S. B., Shankar, S. S., Tellis, M. B., Pandya, V. K., Chugh, A., Giri, A. P., & Kulkarni, M. J. (2021). Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. Journal of Biomolecular Structure and Dynamics, 39(9), 3099–3114.
  • Jung, S. Y., Sobel, E. M., Papp, J. C., Crandall, C. J., Fu, A. N., & Zhang, Z. F. (2016). Obesity and associated lifestyles modify the effect of glucose metabolism‐related genetic variants on impaired glucose homeostasis among postmenopausal women. Genetic Epidemiology, 40(6), 520–530. https://doi.org/10.1002/gepi.21991
  • Justin Thenmozhi, A., William Raja, T. R., Manivasagam, T., Janakiraman, U., & Essa, M. M. (2017). Hesperidin ameliorates cognitive dysfunction, oxidative stress and apoptosis against aluminium chloride induced rat model of Alzheimer’s disease. Nutritional Neuroscience, 20(6), 360–368. https://doi.org/10.1080/1028415X.2016.1144846
  • Ju, C., & Tacke, F. (2016). Hepatic macrophages in homeostasis and liver diseases: From pathogenesis to novel therapeutic strategies. Cellular & Molecular Immunology, 13(3), 316–327. https://doi.org/10.1038/cmi.2015.104
  • Kabała-Dzik, A., Rzepecka-Stojko, A., Kubina, R., Iriti, M., Wojtyczka, R. D., Buszman, E., & Stojko, J. F. (2018). Flavonoids, bioactive components of propolis, exhibit cytotoxic activity and induce cell cycle arrest and apoptosis in human breast cancer cells MDA-MB-231 and MCF-7 – a comparative study. Cellular and Molecular Biology, 64(8), 1–10. https://doi.org/10.14715/cmb/2018.64.8.1
  • Kamaraj, S., Anandakumar, P., Jagan, S., Ramakrishnan, G., & Devaki, T. (2010). Modulatory effect of hesperidin on benzo (a) pyrene induced experimental lung carcinogenesis with reference to COX-2, MMP-2 and MMP-9. European Journal of Pharmacology, 649(1–3), 320–327. https://doi.org/10.1016/j.ejphar.2010.09.017
  • Kamboh, A., & Zhu, W.-Y. (2013). Effect of increasing levels of bioflavonoids in broiler feed on plasma anti-oxidative potential, lipid metabolites, and fatty acid composition of meat. Poultry Science, 92(2), 454–461. https://doi.org/10.3382/ps.2012-02584
  • Kaur, G., Tirkey, N., & Chopra, K. (2006). Beneficial effect of hesperidin on lipopolysaccharide-induced hepatotoxicity. Toxicology, 226(2–3), 152–160. https://doi.org/10.1016/j.tox.2006.06.018
  • Kawaguchi, K., Kikuchi, S.-I., Hasunuma, R., Maruyama, H., Yoshikawa, T., & Kumazawa, Y. (2004). A citrus flavonoid hesperidin suppresses infection-induced endotoxin shock in mice. Biological and Pharmaceutical Bulletin, 27(5), 679–683. https://doi.org/10.1248/bpb.27.679
  • Keles, E. (2020). Mild SARS-CoV-2 infections in children might be based on evolutionary biology and linked with host reactive oxidative stress and antioxidant capabilities. New Microbes and New Infections, 36, 100723. https://doi.org/10.1016/j.nmni.2020.100723
  • Kim, H. Y., Park, M., Kim, K., Lee, Y. M., & Rhyu, M. R. (2013). Hesperetin stimulates cholecystokinin secretion in enteroendocrine STC-1 cells. Biomolecules & Therapeutics, 21(2), 121. https://doi.org/10.4062/biomolther.2012.077
  • Kivrak, I., Duru, M. E., Öztürk, M., Mercan, N., Harmandar, M., & Topçu, G. (2009). Antioxidant, anticholinesterase and antimicrobial constituents from the essential oil and ethanol extract of Salvia potentillifolia. Food Chemistry, 116(2), 470–479. https://doi.org/10.1016/j.foodchem.2009.02.069
  • Koolaji, N., Shammugasamy, B., Schindeler, A., Dong, Q., Dehghani, F., & Valtchev, P. (2020). Citrus peel flavonoids as potential cancer prevention agents. Current Developments in Nutrition, 4(5), nzaa025. https://doi.org/10.1093/cdn/nzaa025
  • Kumar, A., Chaudhary, T., & Mishra, J. (2013). Minocycline modulates neuroprotective effect of hesperidin against quinolinic acid induced Huntington’s disease like symptoms in rats: Behavioral, biochemical, cellular and histological evidences. European Journal of Pharmacology, 720(1–3), 16–28. https://doi.org/10.1016/j.ejphar.2013.10.057
  • Kumar, P., & Kumar, A. (2010). Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington’s like symptoms in rats: Possible role of nitric oxide. Behavioural Brain Research, 206(1), 38–46. https://doi.org/10.1016/j.bbr.2009.08.028
  • Kumar, B. H., Kumar, B. D., & Diwan, P. (2017). Protective effects of natural dietary antioxidants fisetin and hesperidin on chronic mild hyperhomocysteinemia-induced vascular dementia in wistar rats. Journal of the Neurological Sciences, 381, 319. https://doi.org/10.1016/j.jns.2017.08.905
  • Lévèques, A., Actis-Goretta, L., Rein, M. J., Williamson, G., Dionisi, F., & Giuffrida, F. (2012). UPLC–MS/MS quantification of total hesperetin and hesperetin enantiomers in biological matrices. Journal of Pharmaceutical and Biomedical Analysis, 57, 1–6. https://doi.org/10.1016/j.jpba.2011.08.031
  • Li, G., Chen, M.-J., Wang, C., Nie, H., Huang, W.-J., Yuan, T.-D., Sun, T., Shu, K.-G., Wang, C.-F., Gong, Q., & Tang, S.-Q. (2014). Protective effects of hesperidin on concanavalin A-induced hepatic injury in mice. International Immunopharmacology, 21(2), 406–411. https://doi.org/10.1016/j.intimp.2014.05.018
  • Lima, A. C. D., Cecatti, C., Fidélix, M. P., Adorno, M. A. T., Sakamoto, I. K., Cesar, T. B., & Sivieri, K. (2019). Effect of daily consumption of orange juice on the levels of blood glucose, lipids, and gut microbiota metabolites: Controlled clinical trials. Journal of Medicinal Food, 22(2), 202–210. https://doi.org/10.1089/jmf.2018.0080
  • Lim, H., Yeo, E., Song, E., Chang, Y.-H., Han, B.-K., Choi, H.-J., & Hwang, J. (2015). Bioconversion of Citrus unshiu peel extracts with cytolase suppresses adipogenic activity in 3T3-L1 cells. Nutrition Research and Practice, 9(6), 599–605. https://doi.org/10.4162/nrp.2015.9.6.599
  • Lin, C.-W., Tsai, F.-J., Tsai, C.-H., Lai, C.-C., Wan, L., Ho, T.-Y., Hsieh, C.-C., & Chao, P.-D. L. (2005). Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Research, 68(1), 36–42. https://doi.org/10.1016/j.antiviral.2005.07.002
  • Liskova, A., Samec, M., Koklesova, L., Brockmueller, A., Zhai, K., Abdellatif, B., Siddiqui, M., Biringer, K., Kudela, E., Pec, M., Gadanec, L. K., Šudomová, M., Hassan, S. T. S., Zulli, A., Shakibaei, M., Giordano, F. A., Büsselberg, D., Golubnitschaja, O., & Kubatka, P. (2021). Flavonoids as an effective sensitizer for anti-cancer therapy: Insights into multi-faceted mechanisms and applicability towards individualized patient profiles. The EPMA Journal, 12(2), 155–176. https://doi.org/10.1007/s13167-021-00242-5
  • Liu, W. Y., Liou, S.-S., Hong, T.-Y., & Liu, I.-M. (2017). Protective effects of hesperidin (citrus flavonone) on high glucose induced oxidative stress and apoptosis in a cellular model for diabetic retinopathy. Nutrients, 9(12), 1312. https://doi.org/10.3390/nu9121312
  • Liu, X., Luo, F., Li, P., She, Y., & Gao, W. (2017). Investigation of the interaction for three Citrus flavonoids and α-amylase by surface plasmon resonance. Food Research International, 97, 1–6. https://doi.org/10.1016/j.foodres.2017.03.023
  • Li, S., Zhou, X., & Zheng, T. (2004). Progress of studies of obese on mechanism and treatment by traditional Chinese medicine. Chinese Journal of Integrative Medicine, 2(11), 657–659.
  • Li, C., Zug, C., Qu, H., Schluesener, H., & Zhang, Z. (2015). Hesperidin ameliorates behavioral impairments and neuropathology of transgenic APP/PS1 mice. Behavioural Brain Research, 281, 32–42. https://doi.org/10.1016/j.bbr.2014.12.012
  • LoPachin, R. M., & Gavin, T. (2012). Molecular mechanism of acrylamide neurotoxicity: Lessons learned from organic chemistry. Environmental Health Perspectives, 120(12), 1650–1657. https://doi.org/10.1289/ehp.1205432
  • Lu, K., & Yip, Y. M. (2023). Therapeutic potential of bioactive flavonoids from citrus fruit peels toward obesity and diabetes mellitus. Future Pharmacology, 3(1), 14–37. https://doi.org/10.3390/futurepharmacol3010002
  • Madureira, M. B., Concato, V. M., Cruz, E. M. S., Bitencourt de Morais, J. M., Inoue, F. S. R., Concimo Santos, N., Gonçalves, M. D., Cremer de Souza, M., Basso Scandolara, T., Fontana Mezoni, M., Galvani, M., Rodrigues Ferreira Seiva, F., Panis, C., Miranda-Sapla, M. M., & Pavanelli, W. R. (2023). Naringenin and hesperidin as promising alternatives for prevention and co-adjuvant therapy for breast cancer. Antioxidants, 12(3), 586. https://doi.org/10.3390/antiox12030586
  • Mahmoud, A. M. (2013). Hematological alterations in diabetic rats-role of adipocytokines and effect of citrus flavonoids. Excli Journal, 12, 647. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778348/
  • Mahmoud, A. M., Ashour, M. B., Abdel-Moneim, A., & Ahmed, O. M. (2012). Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. Journal of Diabetes and Its Complications, 26(6), 483–490. https://doi.org/10.1016/j.jdiacomp.2012.06.001
  • Mahmoud, A. M., Hernández Bautista, R. J., Sandhu, M. A., & Hussein, O. E. (2019). Beneficial effects of citrus flavonoids on cardiovascular and metabolic health. Oxidative Medicine and Cellular Longevity, 2019, 5484138. https://doi.org/10.1155/2019/5484138
  • Mahmoud, A. M., Mohammed, H. M., Khadrawy, S. M., & Galaly, S. R. (2017). Hesperidin protects against chemically induced hepatocarcinogenesis via modulation of Nrf2/ARE/HO-1, PPARγ and TGF-β1/Smad3 signaling, and amelioration of oxidative stress and inflammation. Chemico-Biological Interactions, 277, 146–158. https://doi.org/10.1016/j.cbi.2017.09.015
  • Majumdar, S., & Srirangam, R. (2009). Solubility, stability, physicochemical characteristics and in vitro ocular tissue permeability of hesperidin: A natural bioflavonoid. Pharmaceutical Research, 26(5), 1217–1225. https://doi.org/10.1007/s11095-008-9729-6
  • Manea, A. (2010). NADPH oxidase-derived reactive oxygen species: Involvement in vascular physiology and pathology. Cell and Tissue Research, 342(3), 325–339. https://doi.org/10.1007/s00441-010-1060-y
  • Menze, E. T., Tadros, M. G., Abdel-Tawab, A. M., & Khalifa, A. E. (2012). Potential neuroprotective effects of hesperidin on 3-nitropropionic acid-induced neurotoxicity in rats. Neurotoxicology, 33(5), 1265–1275. https://doi.org/10.1016/j.neuro.2012.07.007
  • Merisko-Liversidge, E., Liversidge, G. G., & Cooper, E. R. (2003). Nanosizing: A formulation approach for poorly-water-soluble compounds. European Journal of Pharmaceutical Sciences, 18(2), 113–120. https://doi.org/10.1016/S0928-0987(02)00251-8
  • Miler, M., Živanović, J., Ajdžanović, V., Oreščanin-Dušić, Z., Milenković, D., Konić-Ristić, A., Blagojević, D., Milošević, V., & Šošić-Jurjević, B. (2016). Citrus flavanones naringenin and hesperetin improve antioxidant status and membrane lipid compositions in the liver of old-aged Wistar rats. Experimental Gerontology, 84, 49–60. https://doi.org/10.1016/j.exger.2016.08.014
  • Minagar, A., Shapshak, P., & Alexander, J. S. (2004). Dementia and multiple sclerosis: Role of microglia and astrocytes. In Role Glia Neurotox (pp. 263).
  • Mosqueda-Solís, A., Lasa, A., Gómez-Zorita, S., Eseberri, I., Picó, C., & Portillo, M. P. (2017). Screening of potential anti-adipogenic effects of phenolic compounds showing different chemical structure in 3T3-L1 preadipocytes. Food & Function, 8(10), 3576–3586. https://doi.org/10.1039/C7FO00679A
  • Mosqueda-Solís, A., Sánchez, J., Reynés, B., Palou, M., Portillo, M. P., Palou, A., & Picó, C. (2018a). Hesperidin and capsaicin, but not the combination, prevent hepatic steatosis and other metabolic syndrome-related alterations in western diet-fed rats. Scientific Reports, 8(1), 1–14. https://doi.org/10.1038/s41598-018-32875-4/
  • Mottay, D., & Neergheen-Bhujun, V. S. (2015). Anticholinesterase and antioxidant effects of traditional herbal medicines used in the management of neurodegenerative diseases in mauritius. Archives of Medical and Biomedical Research, 2(4), 114–130. https://doi.org/10.4314/ambr.v2i4.2
  • Mubagwa, K. (2020). Cardiac effects and toxicity of chloroquine: A short update. International Journal of Antimicrobial Agents, 56(2), 106057. https://doi.org/10.1016/j.ijantimicag.2020.106057
  • Muili, K. A., Gopalakrishnan, S., Meyer, S. L., Eells, J. T., Lyons, J.-A., & Najbauer, J. (2012). Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by photobiomodulation induced by 670 nm light. PloS One, 7(1), e30655. https://doi.org/10.1371/journal.pone.0030655
  • Mullen, W., Archeveque, M.-A., Edwards, C. A., Matsumoto, H., & Crozier, A. (2008). Bioavailability and metabolism of orange juice flavanones in humans: Impact of a full-fat yogurt. Journal of Agricultural and Food Chemistry, 56(23), 11157–11164. https://doi.org/10.1021/jf801974v
  • Musumeci, L., Maugeri, A., Cirmi, S., Lombardo, G. E., Russo, C., Gangemi, S., Calapai, G., & Navarra, M. (2020). Citrus fruits and their flavonoids in inflammatory bowel disease: An overview. Natural Product Research, 34(1), 122–136. https://doi.org/10.1080/14786419.2019.1601196
  • Nakajima, V. M., Moala, T., Caria, C., Moura, C. S., Amaya-Farfan, J., Gambero, A., Macedo, G. A., & Macedo, J. A. (2017). Biotransformed citrus extract as a source of anti-inflammatory polyphenols: Effects in macrophages and adipocytes. Food Research International, (Ottawa, Ont.) 97, 37–44. https://doi.org/10.1016/j.foodres.2017.03.034
  • Naz, H., Tarique, M., Ahamad, S., Alajmi, M. F., Hussain, A., Rehman, M. T., Luqman, S., & Hassan, M. I. (2019). Hesperidin‐CAMKIV interaction and its impact on cell proliferation and apoptosis in the human hepatic carcinoma and neuroblastoma cells. Journal of Cellular Biochemistry, 120(9), 15119–15130. https://doi.org/10.1002/jcb.28774
  • Nielsen, I. L. F., Chee, W. S., Poulsen, L., Offord-Cavin, E., Rasmussen, S. E., Frederiksen, H., Enslen, M., Barron, D., Horcajada, M.-N., & Williamson, G. (2006). Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans: A randomized, double-blind, crossover trial. The Journal of Nutrition, 136(2), 404–408. https://doi.org/10.1093/jn/136.2.404
  • Nie, S., Xing, Y., Kim, G. J., & Simons, J. W. (2007). Nanotechnology applications in cancer. Annual Review of Biomedical Engineering, 9(1), 257–288. https://doi.org/10.1146/annurev.bioeng.9.060906.152025
  • Ontaneda, D., Thompson, A. J., Fox, R. J., & Cohen, J. A. (2017). Progressive multiple sclerosis: Prospects for disease therapy, repair, and restoration of function. The Lancet, 389(10076), 1357–1366. https://doi.org/10.1016/S0140-67361631320-4
  • Palit, S., Kar, S., Sharma, G., & Das, P. K. (2015). Hesperetin induces apoptosis in breast carcinoma by triggering accumulation of ROS and activation of ASK1/JNK pathway. Journal of Cellular Physiology, 230(8), 1729–1739. https://doi.org/10.1002/jcp.24818
  • Pandey, P., & Khan, F. (2021). A mechanistic review of the anticancer potential of hesperidin, a natural flavonoid from citrus fruits. Nutrition Research, 92, 21–31. https://doi.org/10.1016/j.nutres.2021.05.011
  • Pandey, P., Sayyed, U., Tiwari, R. K., Siddiqui, M. H., Pathak, N., & Bajpai, P. (2019). Hesperidin induces ROS-mediated apoptosis along with cell cycle arrest at G2/M phase in human gall bladder carcinoma. Nutrition and Cancer, 71(4), 676–687. https://doi.org/10.1080/01635581.2018.1508732
  • Park, H.-Y., Choi, H.-D., Eom, H., & Choi, I. (2013). Enzymatic modification enhances the protective activity of citrus flavonoids against alcohol-induced liver disease. Food Chemistry, 139(1–4), 231–240. https://doi.org/10.1016/j.foodchem.2013.01.044
  • Park, H.-K., Kang, S. W., & Park, M.-S. (2019). Hesperidin ameliorates hepatic ischemia-reperfusion injury in Sprague-Dawley rats. Transplantation Proceedings,
  • Parmar, S., Syed, M., Gray, I. P., & Ray, D. S. (2015). Curcumin, hesperidin, and rutin selectively interfere with apoptosis signaling and attenuate streptozotocin-induced oxidative stress-mediated hyperglycemia. Current Neurovascular Research, 12(4), 363–374. https://doi.org/10.2174/1567202612666150812150249
  • Peng, H., Wei, Z., Luo, H., Yang, Y., Wu, Z., Gan, L., & Yang, X. (2016). Inhibition of fat accumulation by hesperidin in Caenorhabditis elegans. Journal of Agricultural and Food Chemistry, 64(25), 5207–5214. https://doi.org/10.1021/acs.jafc.6b02183
  • Polat, F. R., Karaboğa, I., Polat, M. S., Erboğa, Z. F., Yılmaz, A., & Güzel, S. (2018). Effect of hesperetin on inflammatory and oxidative status in trinitrobenzene sulfonic acid-induced experimental colitis model. Cellular and Molecular Biology, 64(11), 58–65. https://doi.org/10.14715/cmb/2018.64.11.11
  • Pu, P. (2016). Protection mechanisms of hesperidin on mouse with insulin resistance. Zhongguo Zhong Yao Za Zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica, 41(17), 3290–3295. https://doi.org/10.4268/cjcmm20161728
  • Puertollano, A., Puertollano, M., Alvarez, E., & de Cienfuegos, G. (2011). Dietary antioxidants: Immunity and host defense. Current Topics in Medicinal Chemistry, 11(14), 1752–1766. https://doi.org/10.2174/156802611796235107
  • Qian, W., Hasegawa, J., Cai, X., Yang, J., Ishihara, Y., Ping, B., Tsuno, S., Endo, Y., Matsuda, A., & Miura, N. (2016a). Components of boiogito suppress the progression of hypercholesterolemia and fatty liver induced by high-cholesterol diet in rats. Yonago Acta Medica, 59(1), 67. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4816751/
  • Qin, X.-Y., Cheng, Y., & Yu, L.-C. (2012). Potential protection of green tea polyphenols against intracellular amyloid beta-induced toxicity on primary cultured prefrontal cortical neurons of rats. Neuroscience Letters, 513(2), 170–173. https://doi.org/10.1016/j.neulet.2012.02.029
  • Rasool, M., Malik, A., Qureshi, M. S., Manan, A., Pushparaj, P. N., Asif, M., Qazi, M. H., Qazi, A. M., Kamal, M. A., Gan, S. H., & Sheikh, I. A. (2014). Recent updates in the treatment of neurodegenerative disorders using natural compounds. Evidence-Based Complementary and Alternative Medicine, 2014, 1–7. https://doi.org/10.1155/2014/979730
  • Rauf, A., Shariati, M. A., Imran, M., Bashir, K., Khan, S. A., Mitra, S., Emran, T. B., Badalova, K., Uddin, M. S., Mubarak, M. S., Aljohani, A. S. M., Alhumaydhi, F. A., Derkho, M., Korpayev, S., & Zengin, G. (2022). Comprehensive review on naringenin and naringin polyphenols as a potent anticancer agent. Environmental Science and Pollution Research International, 29(21), 31025–31041. https://doi.org/10.1007/s11356-022-18754-6
  • Roohbakhsh, A., Parhiz, H., Soltani, F., Rezaee, R., & Iranshahi, M. (2015). Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sciences, 124, 64–74. https://doi.org/10.1016/j.lfs.2014.12.030
  • Rosas, H. D., Lee, S. Y., Bender, A. C., Zaleta, A. K., Vangel, M., Yu, P., Fischl, B., Pappu, V., Onorato, C., & Cha, J.-H. (2010). Altered white matter microstructure in the corpus callosum in Huntington’s disease: Implications for cortical “disconnection”. Neuroimage, 49(4), 2995–3004. https://doi.org/10.1016/j.neuroimage.2009.10.015
  • Rosas, H., Liu, A., Hersch, S., Glessner, M., Ferrante, R., Salat, D., van Der Kouwe, A., Jenkins, B., Dale, A., & Fischl, B. (2002). Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology, 58(5), 695–701. https://doi.org/10.1212/WNL.58.5.695
  • Saiprasad, G., Chitra, P., Manikandan, R., & Sudhandiran, G. (2014). Hesperidin induces apoptosis and triggers autophagic markers through inhibition of Aurora-A mediated phosphoinositide-3-kinase/Akt/mammalian target of rapamycin and glycogen synthase kinase-3 beta signalling cascades in experimental colon carcinogenesis. European Journal of Cancer, 50(14), 2489–2507. https://doi.org/10.1016/j.ejca.2014.06.013
  • Saleh, J., Peyssonnaux, C., Singh, K. K., & Edeas, M. (2020). Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion, 54, 1–7. https://doi.org/10.1016/j.mito.2020.06.008
  • Salem, H. R. A., El-Raouf, A., Saleh, E. M., & Shalaby, K. (2012). Influence of hesperidin combined with Sinemet on genetical and biochemical abnormalities in rats suffering from Parkinson’s disease. Life Science Journal, 9(4), 930–945. http://www.lifesciencesite.com/lsj/life0904/145_11564life0904_930_945.pdf
  • Santos, G., Giraldez-Alvarez, L. D., Ávila-Rodriguez, M., Capani, F., Galembeck, E., Neto, A. G., Barreto, G. E., & Andrade, B. (2016). SUR1 receptor interaction with hesperidin and linarin predicts possible mechanisms of action of Valeriana officinalis in Parkinson. Frontiers in Aging Neuroscience, 8, 97. https://doi.org/10.3389/fnagi.2016.00097
  • Selvaraj, P., & Pugalendi, K. V. (2012). Efficacy of hesperidin on plasma, heart and liver tissue lipids in rats subjected to isoproterenol-induced cardiotoxicity. Experimental and Toxicologic Pathology, 64(5), 449–452. https://doi.org/10.1016/j.etp.2010.10.012
  • Shahbazi, R., Cheraghpour, M., Homayounfar, R., Nazari, M., Nasrollahzadeh, J., & Davoodi, S. H. (2018). Hesperidin inhibits insulin-induced phosphoinositide 3–kinase/Akt activation in human pre-B cell line NALM-6. Journal of Cancer Research and Therapeutics, 14(3), 503. https://doi.org/10.4103/0973-1482.157323
  • Shen, W., Xu, Y., & Lu, Y.-H. (2012). Inhibitory effects of Citrus flavonoids on starch digestion and antihyperglycemic effects in HepG2 cells. Journal of Agricultural and Food Chemistry, 60(38), 9609–9619. https://doi.org/10.1021/jf3032556
  • Shi, Y., Jiang, J., Shan, Z., Bu, Y., Deng, Z., & Cheng, Y. (2015). Oxidative stress and histopathological alterations in liver of Cyprinus carpio L. induced by intraperitoneal injection of microcystin-LR. Ecotoxicology, 24(3), 511–519. https://doi.org/10.1007/s10646-014-1399-z
  • Shin, E. J., Hur, H. J., Sung, M. J., Park, J. H., Yang, H. J., Kim, M. S., Kwon, D. Y., & Hwang, J.-T. (2013). Ethanol extract of the Prunus mume fruits stimulates glucose uptake by regulating PPAR-γ in C2C12 myotubes and ameliorates glucose intolerance and fat accumulation in mice fed a high-fat diet. Food Chemistry, 141(4), 4115–4121. https://doi.org/10.1016/j.foodchem.2013.06.059
  • Shirani, K., Yousefsani, B. S., Shirani, M., & Karimi, G. (2020). Protective effects of naringin against drugs and chemical toxins induced hepatotoxicity: A review. Phytotherapy Research, 34(8), 1734–1744. https://doi.org/10.1002/ptr.6641
  • Siddiqi, A., Hasan, S. K., Nafees, S., Rashid, S., Saidullah, B., & Sultana, S. (2015). Chemopreventive efficacy of hesperidin against chemically induced nephrotoxicity and renal carcinogenesis via amelioration of oxidative stress and modulation of multiple molecular pathways. Experimental and Molecular Pathology, 99(3), 641–653. https://doi.org/10.1016/j.yexmp.2015.11.012
  • Siddiqi, A., Saidullah, B., & Sultana, S. (2018). Anti‐carcinogenic effect of hesperidin against renal cell carcinoma by targeting COX‐2/PGE2 pathway in Wistar rats. Environmental Toxicology, 33(10), 1069–1077. https://doi.org/10.1002/tox.22626
  • Simitzis, P. E., ILIAS‐DIMOPOULOS, V., Charismiadou, M. A., Biniari, E. E., & Deligeorgis, S. G. (2013). The effects of dietary hesperidin supplementation on lamb performance and meat characteristics. Animal Science Journal, 84(2), 136–143. https://doi.org/10.1111/j.1740-0929.2012.01049.x
  • Souza, L. C., de Gomes, M. G., Goes, A. T., Del Fabbro, L., Carlos Filho, B., Boeira, S. P., & Jesse, C. R. (2013). Evidence for the involvement of the serotonergic 5-HT1A receptors in the antidepressant-like effect caused by hesperidin in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 40, 103–109. https://doi.org/10.1016/j.pnpbp.2012.09.003
  • Su, D., Liu, H., Qi, X., Dong, L., Zhang, R., & Zhang, J. (2019). Citrus peel flavonoids improve lipid metabolism by inhibiting miR-33 and miR-122 expression in HepG2 cells. Bioscience, Biotechnology, and Biochemistry, 83(9), 1–9. https://doi.org/10.1080/09168451.2019.1608807
  • Tamilselvam, K., Nataraj, J., Janakiraman, U., Manivasagam, T., & Essa, M. M. (2013). Antioxidant and anti-inflammatory potential of hesperidin against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced experimental Parkinson’s disease in mice. International Journal of Nutrition, Pharmacology, Neurological Diseases, 3(3), 294. https://doi.org/10.4103/2231-0738.114875
  • Thompson, M., Jaiswal, Y., Wang, I., & Williams, L. (2017). Hepatotoxicity: Treatment, causes and applications of medicinal plants as therapeutic agents. Journal Phytopharmacol, 6(3), 186–193. https://doi.org/10.31254/phyto.2017.6308
  • Tian, D., & Ye, Q. (2020). Hepatic complications of COVID‐19 and its treatment. Journal of Medical Virology, 92(10), 1818–1824. https://doi.org/10.1002/jmv.26036
  • Timoshin, A., Dorkina, E., Paukova, E., & Vanin, A. (2005). Quercetin and hesperidin suppress the formation of nitric oxide radicals in rat liver and heart under acute hepatosis conditions. Biophysics, 50(6), 986–989.
  • Tomás‐Barberán, F. A., & Clifford, M. N. (2000). Flavanones, chalcones and dihydrochalcones–nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 80(7), 1073–1080. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1073:AID-JSFA568>3.0.CO;2-B
  • Trujillo, J. A., Croft, N. P., Dudek, N. L., Channappanavar, R., Theodossis, A., Webb, A. I., Dunstone, M. A., Illing, P. T., Butler, N. S., Fett, C., Tscharke, D. C., Rossjohn, J., Perlman, S., & Purcell, A. W. (2014). The cellular redox environment alters antigen presentation. Journal of Biological Chemistry, 289(40), 27979–27991. https://doi.org/10.1074/jbc.M114.573402
  • Utomo, R. Y., Ikawati, M., & Meiyanto, E. (2020). Revealing the potency of citrus and galangal constituents to halt SARS-CoV-2 infection.
  • Vallejo, F., Larrosa, M., Escudero, E., Zafrilla, M. P., Cerda, B., Boza, J., García-Conesa, M. T., Espín, J. C., & Tomás-Barberán, F. A. (2010). Concentration and solubility of flavanones in orange beverages affect their bioavailability in humans. Journal of Agricultural and Food Chemistry, 58(10), 6516–6524. https://doi.org/10.1021/jf100752j
  • Wagener, F. A., Pickkers, P., Peterson, S. J., Immenschuh, S., & Abraham, N. G. (2020). Targeting the heme-heme oxygenase system to prevent severe complications following COVID-19 infections. Antioxidants, 9(6), 540. https://doi.org/10.3390/antiox9060540
  • Wahsha, M. (2010). Biochemical screening of hesperidin and naringin against liver damage in Balb/c Mice Exposed to Microcystin-LR* Mohammad Wahsha,“Saad Al-Jassabi,“Mohd Sofian Azirun and’Khaled Abdul-Aziz” Department of Environmental Sciences, Ca’Foscari University, Italy “Institute of Biological Sciences, University of Malaya. Middle-East Journal of Scientific Research, 6(4), 354–359.
  • Wang, X., Hasegawa, J., Kitamura, Y., Wang, Z., Matsuda, A., Shinoda, W., Miura, N., & Kimura, K. (2011). Effects of hesperidin on the progression of hypercholesterolemia and fatty liver induced by high-cholesterol diet in rats. Journal of Pharmacological Sciences, 117(3), 129–138. https://doi.org/10.1254/jphs.11097FP
  • Wang, Y., Liu, X.-J., Chen, J.-B., Cao, J.-P., Li, X., & Sun, C.-D. (2022). Citrus flavonoids and their antioxidant evaluation. Critical Reviews in Food Science and Nutrition, 62(14), 3833–3854. https://doi.org/10.1080/10408398.2020.1870035
  • Wang, D., Liu, L., Zhu, X., Wu, W., & Wang, Y. (2014). Hesperidin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress in a mouse model of Alzheimer’s disease. Cellular and Molecular Neurobiology, 34(8), 1209–1221. https://doi.org/10.1007/s10571-014-0098-x
  • Wang, Y., Yu, H., Zhang, J., Gao, J., Ge, X., & Lou, G. (2015). Hesperidin inhibits HeLa cell proliferation through apoptosis mediated by endoplasmic reticulum stress pathways and cell cycle arrest. BMC Cancer, 15(1), 1–11. https://doi.org/10.1186/s12885-015-1706-y
  • Wang, S., Zhang, J., Chen, M., & Wang, Y. (2013). Delivering flavonoids into solid tumors using nanotechnologies. Expert Opinion on Drug Delivery, 10(10), 1411–1428. https://doi.org/10.1517/17425247.2013.807795
  • Wan, J., Kuang, G., Zhang, L., Jiang, R., Chen, Y., He, Z., & Ye, D. (2020). Hesperetin attenuated acetaminophen-induced hepatotoxicity by inhibiting hepatocyte necrosis and apoptosis, oxidative stress and inflammatory response via upregulation of heme oxygenase-1 expression. International Immunopharmacology, 83, 106435. https://doi.org/10.1016/j.intimp.2020.106435
  • Williamson, G. (2017). The role of polyphenols in modern nutrition. Nutrition Bulletin, 42(3), 226–235. https://doi.org/10.1111/nbu.12278
  • Wu, J. (2020). Tackle the free radicals damage in COVID-19. Nitric Oxide: Biology & Chemistry / Official Journal of the Nitric Oxide Society, 102, 39–41. https://doi.org/10.1016/j.niox.2020.06.002
  • Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B, 10(5), 766–788. https://doi.org/10.1016/j.apsb.2020.02.008
  • Xia, R., Sheng, X., Xu, X., Yu, C., & Lu, H. (2018). Hesperidin induces apoptosis and G0/G1 arrest in human non-small cell lung cancer A549 cells. International Journal of Molecular Medicine, 41(1), 464–472. https://doi.org/10.3892/ijmm.2017.3250
  • Xiong, H., Wang, J., Ran, Q., Lou, G., Peng, C., Gan, Q., Hu, J., Sun, J., Yao, R., & Huang, Q. (2019). Hesperidin: A therapeutic agent for obesity. Drug Design, Development and Therapy, 13, 3855. https://doi.org/10.2147/DDDT.S227499
  • Yáñez, J. A., Remsberg, C. M., Miranda, N. D., Vega‐Villa, K. R., Andrews, P. K., & Davies, N. M. (2008). Pharmacokinetics of selected chiral flavonoids: Hesperetin, naringenin and eriodictyol in rats and their content in fruit juices. Biopharmaceutics & Drug Disposition, 29(2), 63–82. https://doi.org/10.1002/bdd.588
  • Yáñez, J. A., Teng, X. W., Roupe, K. A., & Davies, N. M. (2005). Stereospecific high-performance liquid chromatographic analysis of hesperetin in biological matrices. Journal of Pharmaceutical and Biomedical Analysis, 37(3), 591–595. https://doi.org/10.1016/j.jpba.2004.10.028
  • Yang, Y., Wolfram, J., Boom, K., Fang, X., Shen, H., & Ferrari, M. (2013). Hesperetin impairs glucose uptake and inhibits proliferation of breast cancer cells. Cell Biochemistry and Function, 31(5), 374–379. https://doi.org/10.1002/cbf.2905
  • Yeh, M.-H., Kao, S.-T., Hung, C.-M., Liu, C.-J., Lee, K.-H., & Yeh, C.-C. (2009). Hesperidin inhibited acetaldehyde-induced matrix metalloproteinase-9 gene expression in human hepatocellular carcinoma cells. Toxicology Letters, 184(3), 204–210. https://doi.org/10.1016/j.toxlet.2008.11.018
  • Yuce, B., Danis, O., Ogan, A., Sener, G., Bulut, M., & Yarat, A. (2009). Antioxidative and lipid lowering effects of 7, 8-dihydroxy-3-(4-methylphenyl) coumarin in hyperlipidemic rats. Arzneimittelforschung, 59(3), 129–134. https://doi.org/10.1055/s-0031-1296375
  • Yu, H., Zheng, L., Yin, L., Xu, L., Qi, Y., Han, X., Xu, Y., Liu, K., & Peng, J. (2014). Protective effects of the total saponins from Dioscorea nipponica Makino against carbon tetrachloride-induced liver injury in mice through suppression of apoptosis and inflammation. International Immunopharmacology, 19(2), 233–244. https://doi.org/10.1016/j.intimp.2014.01.019
  • Zaghloul, R. A., Elsherbiny, N. M., Kenawy, H. I., El-Karef, A., Eissa, L. A., & El-Shishtawy, M. M. (2017). Hepatoprotective effect of hesperidin in hepatocellular carcinoma: Involvement of Wnt signaling pathways. Life Sciences, 185, 114–125. https://doi.org/10.1016/j.lfs.2017.07.026
  • Zamora-Ros, R., Andres Lacueva, C., Lamuela-Raventós, R. M., Berenguer, T., Jakszyn, P., Barricarte, A., Ardanaz, E., Amiano, P., Dorronsoro, M., Larrañaga, N., Martínez, C., Sánchez, M. J., Navarro, C., Chirlaque, M. D., Tormo, M. J., Quirós, J. R., & González, C. A. (2010). Estimation of dietary sources and flavonoid intake in a Spanish adult population (EPIC-Spain). Journal of the American Dietetic Association, 110(3), 390–398. https://doi.org/10.1016/j.jada.2009.11.024
  • Zareei, S., Boojar, M. M., & Amanlou, M. (2017). Inhibition of liver alanine aminotransferase and aspartate aminotransferase by hesperidin and its aglycone hesperetin: An in vitro and in silico study. Life Sciences, 178, 49–55. https://doi.org/10.1016/j.lfs.2017.04.001/
  • Zhang, J., Song, J., Wu, D., Wang, J., & Dong, W. (2015). Hesperetin induces the apoptosis of hepatocellular carcinoma cells via mitochondrial pathway mediated by the increased intracellular reactive oxygen species, ATP and calcium. Medical Oncology, 32(4), 1–11. https://doi.org/10.1007/s12032-015-0516-z
  • Zhou, Z., Zhong, W., Lin, H., Huang, P., Ma, N., Zhang, Y., Zhou, C., Lai, Y., Huang, S., Huang, S., Gao, L., & Lv, Z. (2017). Hesperidin protects against acute alcoholic injury through improving lipid metabolism and cell damage in zebrafish larvae. Evidence-Based Complementary and Alternative Medicine, 2017, 1–9. https://doi.org/10.1155/2017/7282653