841
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Thermal properties of maize seed components

, , , , & ORCID Icon
Article: 2231681 | Received 12 May 2023, Accepted 27 Jun 2023, Published online: 04 Jul 2023

References

  • Abbas, M. S., Mcgregor, F., Fabbri, A., & Ferroukhi, M. Y. (2020). The use of pith in the formulation of lightweight bio-based composites: Impact on mechanical and hygrothermal properties. Construction and Building Materials, 259, 120573. https://doi.org/10.1016/j.conbuildmat.2020.120573
  • Arámbula-Villa, G., Gutiérrez-Árias, E., & Moreno-Martínez, E. (2007). Thermal properties of maize masa and tortillas with different components from maize grains, and additives. Journal of Food Engineering, 80(1), 55–13. https://doi.org/10.1016/j.jfoodeng.2006.05.004
  • Balderas-López, J. A., & Mandelis, A. (2003). Self-normalized photothermal technique for accurate thermal diffusivity measurements in thin metal layers. Review of Scientific Instruments, 74(12), 5219–5225. https://doi.org/10.1063/1.1623626
  • Balderas-López, J. A., & Mandelis, A. (2020). Photopyroelectric spectroscopy of pure fluids and liquid mixtures: Foundations and state-of-the-art applications. International Journal of Thermophysics, 41(6), 78. https://doi.org/10.1007/s10765-020-02662-3
  • Caerels, J., Glorieux, C., & Thoen, J. (1998). Absolute values of specific heat capacity and thermal conductivity of liquids from different modes of operation of a simple photopyroelectric setup. Review of Scientific Instruments, 69(6), 2452–2458. https://doi.org/10.1063/1.1148973
  • Carbajal-Valdez, R., Jiménez-Pérez, J. L., Cruz-Orea, A., Correa-Pacheco, Z. N., Alvarado-Noguez, M. L., Romero-Ibarra, I. C., & Mendoza-Alvarez, J. G. (2017). Thermal properties of centrifuged oils measured by alternative photothermal techniques. Thermochimica Acta, 657(Supplement C), 66–71. https://doi.org/10.1016/j.tca.2017.09.014
  • Carballo-Carballo, A., Alcázar Andrade, J., Estrada Gómez, J., Aguilera Peña, M., García García, M., Benítez Riquelme, I., & Guerrero Ortiz, J. L. (2013). Regla para la calificación de semilla de maíz (Zea mays L.). (NOM-001-SAG/FITO-2013). Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación
  • Chirtoc, M., & Mihailescu, G. (1989). Theory of the photopyroelectric method for investigation of optical and thermal materials properties. Physical Review B, B40(null), 9606–9617. https://doi.org/10.1103/physrevb.40.9606
  • Choudhary, M., Singh, A., Gupta, M., & Rakshit, S. (2020). Enabling technologies for utilization of maize as a bioenergy feedstock. Biofuels, Bioproducts and Biorefining, 14(2), 402–416. https://doi.org/10.1002/bbb.2060
  • Correa-Pacheco, Z. N., Cruz-Orea, A., Jiménez-Pérez, J. L., Solorzano-Ojeda, S. C., & Tramón-Pregnan, C. L. (2015). Measurement of thermal properties of triticale starch films using photothermal techniques. International Journal of Thermophysics, 36(5), 873–879. https://doi.org/10.1007/s10765-014-1771-5
  • Domínguez-Pacheco, A., Hernández-Aguilar, C., & Cruz-Orea, A. (2014). Thermal images of seeds obtained at different depths by Photoacoustic Microscopy (PAM). International Journal of Thermophysics, 36(5–6), 1–7. https://doi.org/10.1007/s10765-014-1789-8
  • FAO. (2023). FAOSTAT, maiz data. FAOSTAT. https://www.fao.org/faostat/en/#search/maize
  • Flores-Cuautle, J. J. A., Cruz-Orea, A., & Suaste-Gomez, E. (2009). Thermal effusivity of the Pb(0.88)Ln(0.08)Ti(0.98)Mn(0.02)O(3) (Ln=La, Eu) ferroelectric ceramic system by inverse photopyroelectric technique. Ferroelectrics, 386(1), 36–40. https://doi.org/10.1080/00150190902961264
  • Flores Cuautle, J. J., Lara Hernández, G., Cruz Orea, A., Suaste Gómez, E., Hernández Aguilar, C., Gonzalez Moran, C., Miranda Hernández, J. G., & Sandoval Gonzalez, O. (2019). Study of thermal properties on the different layers composing a commercial ceramic tile. Revista Mexicana de Física, 65(2 Mar–Apr), 124–127. https://doi.org/10.31349/RevMexFis.65.124
  • Foreign Agricultural Service. (2023). Corn 2022 world production. U.S. Department of agriculture. Retrieved October 3, 2023 from https://ipad.fas.usda.gov/cropexplorer/ce_contact.aspx
  • Gallardo-Hernández, E. A., Lara-Hernández, G., Nieto-Camacho, F., Domínguez-Pacheco, A., Cruz-Orea, A., Hernández-Aguilar, C., Contreras-Gallegos, E., Torres, M. V., & Flores-Cuautle, J. J. A. (2017). Thermal and tribological properties of jatropha oil as additive in commercial oil. International Journal of Thermophysics, 38(4), 54. https://doi.org/10.1007/s10765-017-2185-y
  • Goodman, M. M., & Bird, R. M. (1977). The races of maize iv: Tentative grouping of 219 Latin American races. Economic Botany, 31(2), 204–221. https://doi.org/10.1007/BF02866591
  • Hernández-Aguilar, C., Domínguez-Pacheco, A., Cruz-Orea, A., & Ivanov, R. (2019). Photoacoustic spectroscopy in the optical characterization of foodstuff: A review. Journal of Spectroscopy, 2019, 5920948. https://doi.org/10.1155/2019/5920948
  • Hernández-Aguilar, C., Domínguez-Pacheco, A., Cruz-Orea, A., & Zepeda-Bautista, R. (2015). Depth profiles in maize (Zea mays L.) seeds studied by photoacoustic spectroscopy. International Journal of Thermophysics, 36(5), 891–899. https://doi.org/10.1007/s10765-014-1791-1
  • Lagouin, M., Magniont, C., Sénéchal, P., Moonen, P., Aubert, J.-E., & Laborel-Préneron, A. (2019). Influence of types of binder and plant aggregates on hygrothermal and mechanical properties of vegetal concretes. Construction and Building Materials, 222, 852–871. https://doi.org/10.1016/j.conbuildmat.2019.06.004
  • Lara Hernandez, G., Cruz-Orea, A., Suaste Gomez, E., & Flores Cuautle, J. J. A. (2013). Comparative performance of PLZT and PVDF pyroelectric sensors used to the thermal characterization of liquid samples. Advances in Materials Science and Engineering, 2013, 5. https://doi.org/10.1155/2013/281279
  • Lara-Hernández, G., Flores-Cuautle, J. J. A., Hernandez-Aguilar, C., Suaste-Gómez, E., & Cruz-Orea, A. (2017). Thermal properties of jojoba oil between 20° C and 45° C. International Journal of Thermophysics, 38(8), 115. https://doi.org/10.1007/s10765-017-2252-4
  • Lara Hernandez, G., Hernández Aguilar, C., Cruz Orea, A., Arias Duque, N. P., Wilches Torres, M. A., & Flores Cuautle, J. J. A. (2020). Wheat germ, mamey seed, walnut, coconut, and linseed oil thermal characterization using photothermal techniques. Revista Mexicana de Fisica, 66(2), 5. https://doi.org/10.31349/RevMexFis.66.246
  • Mandelis, A., & Zver, M. M. (1985). Theory of photopyroelectric spectroscopy of solids. Journal of Applied Physics, 57(9), 4421–4430. https://doi.org/10.1063/1.334565
  • Marquezini, M. V., Cella, N., Mansanares, A. M., Vargas, H., & Miranda, L. C. M. (1991). Open photoacoustic cell spectroscopy. Measurement Science and Technology, 2(4), 396. https://doi.org/10.1088/0957-0233/2/4/020
  • Masanabo, M. A., Ray, S. S., & Emmambux, M. N. (2022). Properties of thermoplastic maize starch-zein composite films prepared by extrusion process under alkaline conditions. International Journal of Biological Macromolecules, 208, 443–452. https://doi.org/10.1016/j.ijbiomac.2022.03.060
  • Mayer Laigle, C., Haurie Ibarra, L., Breysse, A., Palumbo, M., Mabille, F., Lacasta Palacio, A. M., & Barron, C. (2021). Preserving the cellular tissue structure of maize pith though dry fractionation processes: A key point to use as insulating agro-materials. Materials, 14(18), 5350. https://doi.org/10.3390/ma14185350
  • Molteberg, E. L., Vogt, G., Nilsson, A., & Frolich, W. (1995). Effects of storage and heat processing on the content and composition of free fatty acids in oats. Cereal Chemistry, 72(1), 88–93.
  • Nuss, E. T., & Tanumihardjo, S. A. (2010). Maize: A paramount staple crop in the context of global nutrition. Comprehensive Reviews in Food Science and Food Safety, 9(4), 417–436. https://doi.org/10.1111/j.1541-4337.2010.00117.x
  • Pacheco, A. D., Aguilar, C. H., & Cruz-Orea, A. (2013). Analysis of maize seed germs by photoacoustic microscopy and photopyroelectric technique. International Journal of Thermophysics, 34(5), 979–985. https://doi.org/10.1007/s10765-012-1361-3
  • Perondi, L., & Miranda, L. (1987). Minimal‐volume photoacoustic cell measurement of thermal diffusivity: Effect of the thermoelastic sample bending. Journal of Applied Physics, 62(7), 2955–2959. https://doi.org/10.1063/1.339380
  • Norma Oficial Mexicana Productos alimenticios no industrializados para consumo humano -Cereales, (2002). https://sitios1.dif.gob.mx/alimentacion/docs/NMX-FF-034-1-SCFI-2002_MAIZ_blanco.pdf
  • Rojas-Lima, J. E., Domínguez-Pacheco, F. A., Hernández-Aguilar, C., Hernández-Simón, L. M., & Cruz-Orea, A. (2018). Kolmogorov–Smirnov test for statistical characterization of photopyroelectric signals obtained from maize seeds. International Journal of Thermophysics, 40(1), 4. https://doi.org/10.1007/s10765-018-2462-4
  • Sahraoui, A. H., Longuemart, S., Dadarlat, D., Delenclos, S., Kolinsky, C., & Buisine, J. M. (2002). The application of the photopyroelectric method for measuring the thermal parameters of pyroelectric materials. Review of Scientific Instruments, 73(7), 2766–2772. https://doi.org/10.1063/1.1482151
  • Saldivar, S. O. S., & Perez-Carrillo, E. (2016). Maize. In (Eds.), Encyclopedia of food and health (pp. 601–609). Academic Press. https://doi.org/10.1016/B978-0-12-384947-2.00436-0
  • Santpoort, R. (2020). The drivers of maize area expansion in sub-saharan Africa. How policies to boost maize production overlook the interests of smallholder farmers. Land, 9(3), 68. https://doi.org/10.3390/land9030068
  • Singh, N., Kaur, A., & Shevkani, K. (2014). Maize: Grain structure, composition, milling, and starch characteristics. In D. P. Chaudhary, S. Kumar, & S. Langyan (Eds.), Maize: Nutrition dynamics and novel uses (pp. 65–76). Springer India.
  • Velasco, D. S., Baesso, M. L., Medina, A. N., Bicanic, D. D., Koehorst, R., Hooft, J. J. J. V. D., & Bento, A. C. (2011). Thermal diffusivity of periderm from tomatoes of different maturity stages as determined by the concept of the frequency-domain open photoacoustic cell. Journal of Applied Physics, 109(3), 034703. https://doi.org/10.1063/1.3530735
  • Wang, L., Pu, H., Sun, D.-W., Liu, D., Wang, Q., & Xiong, Z. (2015). Application of hyperspectral imaging for prediction of textural properties of maize seeds with different storage periods. Food Analytical Methods, 8(6), 1535–1545. https://doi.org/10.1007/s12161-014-0029-y
  • Wang, L., Sun, D.-W., Pu, H., & Zhu, Z. (2016). Application of hyperspectral imaging to discriminate the variety of maize seeds. Food Analytical Methods, 9(1), 225–234. https://doi.org/10.1007/s12161-015-0160-4
  • Xu, X., Flores Cuautle, J. J. A., Kouyate, M., Roozen, N. B., Goossens, J., Menon, P., Malayil Kuriakose, M., Salenbien, R., Rajesh Nair, R., Glorieux, C., Griesmar, P., Martinez, L., & Serfaty, S. (2016). Evolution of elastic and thermal properties during TMOS-gel formation determined by ringing bottle acoustic resonance spectroscopy, impulsive stimulated scattering, photopyroelectric spectroscopy and the hot ball method. Journal of Physics D: Applied Physics, 49(8), 085502. https://doi.org/10.1088/0022-3727/49/8/085502
  • Yıldırım-Yalçın, M., Sadıkoğlu, H., & Şeker, M. (2021). Characterization of edible film based on grape juice and cross-linked maize starch and its effects on the storage quality of chicken breast fillets. Lwt, 142, 111012. https://doi.org/10.1016/j.lwt.2021.111012
  • Zhao, Y., Mao, X., Shukla, M. K., & Li, S. (2020). Modeling Soil Water–Heat Dynamic Changes in Seed-Maize Fields under Film Mulching and Deficit Irrigation Conditions. MS Binici and EAcs Water, 12(5), 1330. https://doi.org/10.3390/w12051330
  • Żołek-Tryznowska, Z., & Kałuża, A. (2021). The influence of starch origin on the properties of starch films: Packaging performance. Materials, 14(5), 1146. https://doi.org/10.3390/ma14051146