1,291
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Assessing biodiversity potential of arable farms – A conceptual approach

, , , &
Article: 2234153 | Received 31 Mar 2023, Accepted 04 Jul 2023, Published online: 11 Jul 2023

References

  • Adl, S. M., Coleman, D. C., & Read, F. (2006). Slow recovery of soil biodiversity in sandy loam soils of Georgia after 25 years of no-tillage management. Agriculture, Ecosystems and Environment, 114(2–4), 1–22. https://doi.org/10.1016/j.agee.2005.11.019
  • Aktar, W. M., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1–12. https://doi.org/10.2478/v10102-009-0001-7
  • Alba, O. S., Syrovy, L. D., Duddu, H. S. N., & Shirtliffe, S. J. (2020). Increased seeding rate and multiple methods of mechanical weed control reduce weed biomass in a poorly competitive organic crop. Field Crops Research, 245, 107648. https://doi.org/10.1016/j.fcr.2019.107648
  • Allen, T., Murray, K. A., Zambrana-Torrelio, C., Morse, S. S., Rondinini, C., DiMarco, M., Breit, N., Olival, K. J., & Daszak, P. (2017). Global hotspots and correlates of emerging zoonotic diseases. Nature Communications, 8(1), 1124. https://doi.org/10.1038/s41467-017-00923-8
  • Batáry, P., Gallé, R., Riesch, F., Fischer, C., Dormann, C. F., Mußhoff, O., Császár, P., Fusaro, S., Gayer, C., Happe, A.-K., Kurucz, K., Molnár, D., Rösch, V., Wietzke, A., & Tscharntke, T. (2017). The former iron curtain still drives biodiversity–profit trade-offs in German agriculture. Nature Ecology & Evolution, 1(9), 1279–1284. https://doi.org/10.1038/s41559-017-0272-x
  • Beketov, M. A., Kefford, B. J., Schäfer, R. B., & Liess, M. (2013). Pesticides reduce regional biodiversity of stream invertebrates. Proceedings of the National Academy of Sciences, 110(27), 11039–11043. https://doi.org/10.1073/pnas.1305618110
  • Bennett, E. M., Baird, J., Baulch, H., Chaplin-Kramer, R., Fraser, E., Loring, P., Morrison, P., Parrott, L., Sherren, K., Winkler, K. J., Cimon-Morin, J., Fortin, M.-J., Kurylyk, B. L., Lundholm, J., Poulin, M., Rieb, J. T., Gonzalez, A., Hickey, G. M., Lapen, D. (2021). Ecosystem services and the resilience of agricultural landscapes. Advances in Ecological Research, 64, 1–43. https://doi.org/10.1016/bs.aecr.2021.01.001
  • Berbeć, A. K., Feledyn-Szewczyk, B., Thalmann, C., Wyss, R., Grenz, J., Kopiński, J., Stalenga, J., & Radzikowski, P. (2018). Assessing the sustainability performance of organic and low-input conventional farms from eastern Poland with the RISE indicator system. Sustainability, 10(6), 1792. https://doi.org/10.3390/su10061792
  • Birrer, S., Zellweger-Fischer, J., Stoeckli, S., Korner-Nievergelt, F., Balmer, O., Jenny, M., & Pfiffner, L. (2014). Biodiversity at the farm scale: A novel credit point system. Agriculture, Ecosystems & Environment, 197, 195–203. https://doi.org/10.1016/j.agee.2014.08.008
  • Böcker, T., Möhring, N., & Finger, R. (2019). Herbicide free agriculture? A bio-economic modelling application to Swiss wheat production. Agricultural Systems, 173, 378–392. https://doi.org/10.1016/j.agsy.2019.03.001
  • Boetzl, F. A., Douhan Sundahl, A., Friberg, H., Viketoft, M., Bergkvist, G., & Lundin, O. (2022). Undersowing oats with clovers supports pollinators and suppresses arable weeds without reducing yields. Journal of Applied Ecology, 60(4), 614–623. https://doi.org/10.1111/1365-2664.14361
  • Bowles, T. M., Mooshammer, M., Socolar, Y., Calderón, F., Cavigelli, M. A., Culman, S. W., Deen, W., Drury, C. F., Garcia, A. G., Gaudin, A. C. M., Harkcom, W. S., Lehman, R. M., Osborne, S. L., Robertson, G. P., Salerno, J., Schmer, M. R., Strock, J., & Grandy, A. S. (2020). Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth, 2(3), 284–293. https://doi.org/10.1016/j.oneear.2020.02.007
  • Brühl, C. A., & Zaller, J. G. (2019). Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Frontiers in Environmental Science, 7(177). https://doi.org/10.3389/fenvs.2019.00177
  • Butler, S. J., Brooks, D., Feber, R. E., Storkey, J., Vickery, J. A., & Norris, K. (2009). A cross‐taxonomic index for quantifying the health of farmland biodiversity. Journal of Applied Ecology, 46(6), 1154–1162. https://doi.org/10.1111/j.1365-2664.2009.01709.x
  • Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G. M., Tilman, D., Wardle, D. A., Kinzig, A. P., Daily, G. C., Loreau, M., Grace, J. B., Larigauderie, A., Srivastava, D. S., & Naeem, S. (2012). Biodiversity loss and its impact on humanity. Nature, 486(7401), 59–67. https://doi.org/10.1038/nature11148
  • Cardona, A., Tchamitchian, M., Penvern, S., Dufils, A., Jacobsen, S. K., Korsgaard, M., Porcel, M., Świergiel, W., Tasin, M., Warlop, F., & Sigsgaard, L. (2021). Monitoring methods adapted to different perceptions and uses of functional biodiversity: Insights from a European qualitative study. Ecological Indicators, 129, 107883. https://doi.org/10.1016/j.ecolind.2021.107883
  • Cardoso, P., Scharff, N., Gaspar, C., Henriques, S. S., Carvalho, R., Castro, P. H., Schmidt, J. B., Silva, I., Szüts, T., De Castro, A., & Crespo, L. C. (2008). Rapid biodiversity assessment of spiders (Araneae) using semi‐quantitative sampling: A case study in a Mediterranean forest. Insect Conservation and Diversity, 1(2), 71–84. https://doi.org/10.1111/j.1752-4598.2007.00008.x
  • Challéat, S., Barré, K., Laforge, A., Lapostolle, D., Franchomme, M., Sirami, C., Le Viol, I., Milian, J., & Kerbiriou, C. (2021). Grasping darkness: The dark ecological network as a social-ecological framework to limit the impacts of light pollution on biodiversity. Ecology and Society, 26(1), 15. https://doi.org/10.5751/ES-12156-260115
  • Chamorro, L., Masalles, R. M., & Sans, F. X. (2016). Arable weed decline in Northeast Spain: Does organic farming recover functional biodiversity? Agriculture, Ecosystems & Environment, 223, 1–9. https://doi.org/10.1016/j.agee.2015.11.027
  • Chaplin, S. P., Mills, J., & Chiswell, H. (2021). Developing payment-by-results approaches for agri-environment schemes: Experience from an arable trial in England. Land Use Policy, 109, 105698. https://doi.org/10.1016/j.landusepol.2021.105698
  • Chase, J. M., McGill, B. J., McGlinn, D. J., May, F., Blowes, S. A., Xiao, X., Knight, T. M., Purschke, O., Gotelli, N. J., & Adler, F. (2018). Embracing scale‐dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecology Letters, 21(11), 1737–1751. https://doi.org/10.1111/ele.13151
  • Clough, Y., Kirchweger, S., & Kantelhardt, J. (2020). Field sizes and the future of farmland biodiversity in European landscapes. Conservation Letters, 13(6), e12752. https://doi.org/10.1111/conl.12752
  • Degani, E., Leigh, S. G., Barber, H. M., Jones, H. E., Lukac, M., Sutton, P., & Potts, S. G. (2019). Crop rotations in a climate change scenario: Short-term effects of crop diversity on resilience and ecosystem service provision under drought. Agriculture, Ecosystems & Environment, 285, 106625. https://doi.org/10.1016/j.agee.2019.106625
  • Dicks, L. V., Ashpole, J. E., Dänhardt, J., James, K., Jönsson, A., Randell, N., Showler, D. A., Smith, R. K., Turpie, S., Williams, D., & Sutherland, W. J. (2014). Farmland conservation: Evidence for the effects of interventions in northern and western Europe. Pelagic Publishing.
  • Dollinger, J., & Jose, S. (2018). Agroforestry for soil health. Agroforestry Systems, 92(2), 213–219. https://doi.org/10.1007/s10457-018-0223-9
  • Dudley, N., & Alexander, S. (2017). Agriculture and biodiversity: A review. Biodiversity, 18(2–3), 45–49. https://doi.org/10.1080/14888386.2017.1351892
  • Dyson, K., & Yocom, K. (2015). Ecological design for urban waterfronts. Urban Ecosystems, 18(1), 189–208. https://doi.org/10.1007/s11252-014-0385-9
  • Elmiger, N., Finger, R., Ghazoul, J., & Schaub, S. (2023). Biodiversity indicators for result-based agri-environmental schemes–current state and future prospects. Agricultural Systems, 204, 103538. https://doi.org/10.1016/j.agsy.2022.103538
  • Engbersen, N., Stefan, L., Brooker, R. W., & Schöb, C. (2021). Temporal dynamics of biodiversity effects and light-use-related traits in two intercropping systems. Journal of Sustainable Agriculture and Environment, 1(1), 54–65. https://doi.org/10.1002/sae2.12010
  • Erisman, J. W., van Eekeren, N., de Wit, J., Koopmans, C., Cuijpers, W., Oerlemans, N., & Koks, B. J. (2016). Agriculture and biodiversity: A better balance benefits both. AIMS Agriculture and Food, 1(2), 157–174. https://doi.org/10.3934/agrfood.2016.2.157
  • Faupel, M., von Blanckenhagen, F., Lückmann, J., Ruf, D., Wiedemann, G., & Ludwigs, J. D. (2023). Precision farming and environmental pesticide regulation in the EU—How does it fit together? Integrated Environmental Assessment and Management, 19(1), 17–23. https://doi.org/10.1002/ieam.4626
  • Fishel, F. M. (2006). Plant growth regulators: Document PI-139, pesticide information office, Florida cooperative extension service. Institute of Food and Agricultural Sciences, University of Florida. https://journals.flvc.org/edis/article/download/117921/128673/
  • Gabel, V., Home, R., Stöckli, S., Meier, M., Stolze, M., & Köpke, U. (2018). Evaluating on-farm biodiversity: A comparison of assessment methods. Sustainability, 10(12), 4812. https://doi.org/10.3390/su10124812
  • Garske, B., Bau, A., & Ekardt, F. (2021). Digitalization and AI in European agriculture: A strategy for achieving climate and biodiversity targets? Sustainability, 13(9), 4652. https://doi.org/10.3390/su13094652
  • Gascon, C., Brooks, T. M., Contreras MacBeath, T., Heard, N., Konstant, W., Lamoreux, J., Launay, F., Maunder, M., Mittermeier, R. A., Molur, S., Mubarak, R. K. A., Parr, M. J., Rhodin, A. G. J., Rylands, A. B., Soorae, P., Sanderson, J. G., & Vié, J. C. (2015). The importance and benefits of species. Current Biology, 25(10), R431–R438. https://doi.org/10.1016/j.cub.2015.03.041
  • Geertsema, W., Rossing, W. A., Landis, D. A., Bianchi, F. J., van Rijn, P. C., Schaminée, J. H., Tscharntke, T., & van der Werf, W. (2016). Actionable knowledge for ecological intensification of agriculture. Frontiers in Ecology and the Environment, 14(4), 209–216. https://doi.org/10.1002/fee.1258
  • Gentsch, N., Boy, J., Batalla, J. D., Heuermann, D., von Wirén, N., Schweneker, D., Feuerstein, U., Groß, J., Bauer, B., Reinhold-Hurek, B., Hurek, T., Camacho Céspedes, F., & Guggenberger, G. (2020). Catch crop diversity increases rhizosphere carbon input and soil microbial biomass. Biology and Fertility of Soils, 56(7), 943–957. https://doi.org/10.1007/s00374-020-01475-8
  • Genung, M. A., Fox, J., Winfree, R., & Simova, I. (2020). Species loss drives ecosystem function in experiments, but in nature the importance of species loss depends on dominance. Global Ecology and Biogeography, 29(9), 1531–1541. https://doi.org/10.1111/geb.13137
  • Gharehbaghi, K., McManus, K., & Robson, K. (2019). Minimizing the environmental impacts of mega infrastructure projects: Australian public transport perspective. Journal of Engineering, Design & Technology, 17(4), 736–746. https://doi.org/10.1108/JEDT-12-2018-0223
  • Gonthier, D. J., Ennis, K. K., Farinas, S., Hsieh, H.-Y., Iverson, A. L., Batáry, P., Rudolphi, J., Tscharntke, T., Cardinale, B. J., & Perfecto, I. (2014). Biodiversity conservation in agriculture requires a multi-scale approach. Proceedings of the Royal Society B: Biological Sciences, 281(1791), 20141358. https://doi.org/10.1098/rspb.2014.1358
  • Gottwald, F., & Stein-Bachinger, K. (2018). ‘Farming for Biodiversity’—a new model for integrating nature conservation achievements on organic farms in north-eastern Germany. Organic Agriculture, 8(1), 79–86. https://doi.org/10.1007/s13165-017-0198-2
  • Goucher, L., Bruce, R., Cameron, D. D., Koh, S. C., & Horton, P. (2017). The environmental impact of fertilizer embodied in a wheat-to-bread supply chain. Nature Plants, 3(3), 1–5. https://doi.org/10.1038/nplants.2017.12
  • Grass, I., Loos, J., Baensch, S., Batáry, P., Librán‐Embid, F., Ficiciyan, A., Klaus, F., Riechers, M., Rosa, J., Tiede, J., Udy, K., Westphal, C., Wurz, A., & Tscharntke, T. (2019). Land‐sharing/‐sparing connectivity landscapes for ecosystem services and biodiversity conservation. People & Nature, 1(2), 262–272. https://doi.org/10.1002/pan3.21
  • Halliday, F. W., Rohr, J. R., Laine, A. L., & Chase, J. (2020). Biodiversity loss underlies the dilution effect of biodiversity. Ecology Letters, 23(11), 1611–1622. https://doi.org/10.1111/ele.13590
  • Hasler, K., Bröring, S., Omta, S. W., & Olfs, H.-W. (2015). Life cycle assessment (LCA) of different fertilizer product types. The European Journal of Agronomy, 69, 41–51. https://doi.org/10.1016/j.eja.2015.06.001
  • Hass, A. L., Kormann, U. G., Tscharntke, T., Clough, Y., Baillod, A. B., Sirami, C., Fahrig, L., Martin, J.-L., Baudry, J., Bertrand, C., Bosch, J., Brotons, L., Burel, F., Georges, R., Giralt, D., Marcos-García, M. Á., Ricarte, A., Siriwardena, G., & Batáry, P. (2018). Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe. Proceedings of the Royal Society B: Biological Sciences, 285(1872), 20172242. https://doi.org/10.1098/rspb.2017.2242
  • Henle, K., Alard, D., Clitherow, J., Cobb, P., Firbank, L., Kull, T., McCracken, D., Moritz, R. F. A., Niemelä, J., Rebane, M., Wascher, D., Watt, A., & Young, J. (2008). Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe–A review. Agriculture, Ecosystems & Environment, 124(1–2), 60–71. https://doi.org/10.1016/j.agee.2007.09.005
  • Hirsch, D., Turck, A., & Terlau, W. (2022). Institutional settings surrounding agriculture and biodiversity: Challenges, potentials and obstacles of a contract-based nature protection scheme in the Rhine-Sieg district of Germany. International Journal on Food System Dynamics, 13(1), 30–45. https://doi.org/10.1155/2022/4384657
  • Hochkirch, A., Samways, M. J., Gerlach, J., Böhm, M., Williams, P., Cardoso, P., Cumberlidge, N., Stephenson, P. J., Seddon, M. B., Clausnitzer, V., Borges, P. A. V., Mueller, G. M., Pearce-Kelly, P., Raimondo, D. C., Danielczak, A., & Dijkstra, K. D. B. (2020). A strategy for the next decade to address data deficiency in neglected biodiversity. Conservation Biology, 35(2), 502–509. https://doi.org/10.1111/cobi.13589
  • Honermeier, B. (2006). Diversity in crop production systems. In G. Benckiser & S. Schnell (Eds.), Biodiversity in agricultural production systems (pp. 1–19). Taylor & Francis Group.
  • Hough, R. L. (2014). Biodiversity and human health: Evidence for causality? Biodiversity and Conservation, 23(2), 267–288. https://doi.org/10.1007/s10531-013-0614-1
  • IPBES. (2020). Workshop report on biodiversity and pandemics of the intergovernmental platform on biodiversity and ecosystem services. https://doi.org/10.5281/zenodo.4147317
  • Jalli, M., Huusela, E., Jalli, H., Kauppi, K., Niemi, M., Himanen, S., & Jauhiainen, L. (2021). Effects of crop rotation on spring wheat yield and pest incidence in different tillage systems: A multi-year experiment in Finnish growing conditions. Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.647335
  • Johnson, C. N., Balmford, A., Brook, B. W., Buettel, J. C., Galetti, M., Guangchun, L., & Wilmshurst, J. M. (2017). Biodiversity losses and conservation responses in the Anthropocene. Science: Advanced Materials and Devices, 356(6335), 270–275. https://doi.org/10.1126/science.aam9317
  • Karayel, D., & Sarauskis, E. (2019). Environmental impact of no-tillage farming. Environmental Research, Engineering and Management, 75(1), 7–12. https://doi.org/10.5755/j01.erem.75.1.20861
  • Keesing, F., & Ostfeld, R. S. (2021). Impacts of biodiversity and biodiversity loss on zoonotic diseases. Proceedings of the National Academy of Sciences, 118(17), e2023540118. https://doi.org/10.1073/pnas.2023540118
  • Kulturenratgeber 2020. (2019). Bayern, Baden-Württemberg. Rheinland-Pfalz, Saarland. https://www.agrar.basf.de/Dokumente/Kulturenratgeber/KuRa_BWRPSLBY.pdf
  • Landis, D. A. (2017). Designing agricultural landscapes for biodiversity-based ecosystem services. Basic and Applied Ecology, 18, 1–12. https://doi.org/10.1016/j.baae.2016.07.005
  • Li, X. (2020). Prospects for forest and biodiversity protection. Green civilization. Springer Singapore. https://doi.org/10.1007/978-981-15-7812-0_9
  • Li, M., Guo, J., Ren, T., Luo, G., Shen, Q., Lu, J., Guo, S., & Ling, N. (2021). Crop rotation history constrains soil biodiversity and multifunctionality relationships. Agriculture, Ecosystems & Environment, 319, 107550. https://doi.org/10.1016/j.agee.2021.107550
  • Li, M., He, P., Guo, X.-L., Zhang, X., & Li, L.-J. (2021). Fifteen-year no tillage of a Mollisol with residue retention indirectly affects topsoil bacterial community by altering soil properties. Soil and Tillage Research, 205, 104804. https://doi.org/10.1016/j.still.2020.104804
  • Luo, Z., Zhang, L., Mou, Y., Cui, S., Gu, Z., Yu, J., & Ma, X. (2019). Multi-residue analysis of plant growth regulators and pesticides in traditional Chinese medicines by high-performance liquid chromatography coupled with tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 411(11), 2447–2460. https://doi.org/10.1007/s00216-019-01691-8
  • Machleb, J., Peteinatos, G. G., Kollenda, B. L., Andújar, D., & Gerhards, R. (2020). Sensor-based mechanical weed control: Present state and prospects. Computers and Electronics in Agriculture, 176, 105638. https://doi.org/10.1016/j.compag.2020.105638
  • Mahmood, I., Imadi, S. R., Shazadi, K., Gul, A., & Hakeem, K. R. (2016). Effects of pesticides on environment. In K. R. Hakeem, M. S. Akhtar, & S. N. A. Abdullah (Eds.), Plant, soil and microbes (pp. 253–269). https://doi.org/10.1007/978-3-319-27455-3_13
  • Maier, S. D., Lindner, J. P., & Francisco, J. (2019). Conceptual framework for biodiversity assessments in global value chains. Sustainability, 11(7), 1841. https://doi.org/10.3390/su11071841
  • Mala, M., Mollah, M. M., & Baishnab, M. (2020). Importance of intercropping for biodiversity conservation. Journal of Science, Technology and Environment Informatics, 10(2), 709–716. https://doi.org/10.18801/jstei.100220.71
  • Mantyka-Pringle, C. S., Visconti, P., DiMarco, M., Martin, T. G., Rondinini, C., & Rhodes, J. R. (2015). Climate change modifies risk of global biodiversity loss due to land-cover change. Biological Conservation, 187, 103–111. https://doi.org/10.1016/j.biocon.2015.04.016
  • Marja, R., Viik, E., Mänd, M., Phillips, J., Klein, A.-M., Batáry, P., & Garibaldi, L. (2018). Crop rotation and agri-environment schemes determine bumblebee communities via flower resources. Journal of Applied Ecology, 55(4), 1714–1724. https://doi.org/10.1111/1365-2664.13119
  • Martin, A. E., Collins, S. J., Crowe, S., Girard, J., Naujokaitis-Lewis, I., Smith, A. C., Lindsay, K., Mitchell, S., & Fahrig, L. (2020). Effects of farmland heterogeneity on biodiversity are similar to—or even larger than—the effects of farming practices. Agriculture, Ecosystems & Environment, 288, 106698. https://doi.org/10.1016/j.agee.2019.106698
  • May, F., Gerstner, K., McGlinn, D. J., Xiao, X., Chase, J. M., & Goslee, S. (2018). Mobsim: An R package for the simulation and measurement of biodiversity across spatial scales. Methods in Ecology and Evolution, 9(6), 1401–1408. https://doi.org/10.1111/2041-210X.12986
  • Mijatović, D., Van Oudenhoven, F., Eyzaguirre, P., & Hodgkin, T. (2013). The role of agricultural biodiversity in strengthening resilience to climate change: Towards an analytical framework. International Journal of Agricultural Sustainability, 11(2), 95–107. https://doi.org/10.1080/14735903.2012.691221
  • Moonen, A. C., & Bàrberi, P. (2008). Functional biodiversity: An agroecosystem approach. Agriculture, Ecosystems and Environment, 127(1–2), 7–21. https://doi.org/10.1016/j.agee.2008.02.013
  • Mozumder, P., & Berrens, R. P. (2007). Inorganic fertilizer use and biodiversity risk: An empirical investigation. Ecological Economics, 62(3–4), 538–542. https://doi.org/10.1016/j.ecolecon.2006.07.016
  • Nemecek, T., Hayer, F., Bonnin, E., Carrouée, B., Schneider, A., & Vivier, C. (2015). Designing eco-efficient crop rotations using life cycle assessment of crop combinations. The European Journal of Agronomy, 65, 40–51. https://doi.org/10.1016/j.eja.2015.01.005
  • Nijkamp, P., Vindigni, G., & Nunes, P. A. L. D. (2008). Economic valuation of biodiversity: A comparative study. Ecological Economics, 67(2), 217–231. https://doi.org/10.1016/j.ecolecon.2008.03.003
  • Padha, S., Kumar, R., Dhar, A., & Sharma, P. (2021). Microplastic pollution in mountain terrains and foothills: A review on source, extraction, and distribution of microplastics in remote areas. Environmental Research, 207, 112232. https://doi.org/10.1016/j.envres.2021.112232
  • Plaisance, L., Knowlton, N., Paulay, G., & Meyer, C. (2009). Reef-associated crustacean fauna: Biodiversity estimates using semi-quantitative sampling and DNA barcoding. Coral Reefs, 28(4), 977–986. https://doi.org/10.1007/s00338-009-0543-3
  • Prevedello, J. A., Almeida-Gomes, M., Lindenmayer, D. B., & Magrach, A. (2018). The importance of scattered trees for biodiversity conservation: A global meta-analysis. Journal of Applied Ecology, 55(1), 205–214. https://doi.org/10.1111/1365-2664.12943
  • Ratnadass, A., & Deguine, J.-P. (2021). Crop protection practices and viral zoonotic risks within a one health framework. Science of the Total Environment, 774, 145172. https://doi.org/10.1016/j.scitotenv.2021.145172
  • Roe, D. (2019). Biodiversity loss—more than an environmental emergency. The Lancet Planetary Health, 3(7), e287–e289. https://doi.org/10.1016/S2542-5196(19)30113-5
  • Rosa-Schleich, J., Loos, J., Mußhoff, O., & Tscharntke, T. (2019). Ecological-economic trade-offs of diversified farming systems–a review. Ecological Economics, 160, 251–263. https://doi.org/10.1016/j.ecolecon.2019.03.002
  • Rounsevell, M. D., Harfoot, M., Harrison, P. A., Newbold, T., Gregory, R. D., & Mace, G. M. (2020). A biodiversity target based on species extinctions. Science: Advanced Materials and Devices, 368(6496), 1193–1195. https://doi.org/10.1126/science.aba6592
  • Sandvik, H., Sæther, B. E., Holmern, T., Tufto, J., Engen, S., & Roy, H. E. (2013). Generic ecological impact assessments of alien species in Norway: A semi-quantitative set of criteria. Biodiversity and Conservation, 22(1), 37–62. https://doi.org/10.1007/s10531-012-0394-z
  • Schmeller, D. S., & Bridgewater, P. (2016). The intergovernmental platform on biodiversity and ecosystem services (IPBES): Progress and next steps. Biodiversity and Conservation, 25(5), 801–805. https://doi.org/10.1007/s10531-016-1095-9
  • Schmeller, D. S., Courchamp, F., & Killeen, G. (2020). Biodiversity loss, emerging pathogens and human health risks. Biodiversity and Conservation, 29(11–12), 3095–3102. https://doi.org/10.1007/s10531-020-02021-6
  • Scotti, R., Bonanomi, G., Scelza, R., Zoina, A., & Rao, M. A. (2015). Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. Journal of Soil Science and Plant Nutrition, 15(2), 333–352. https://doi.org/10.4067/S0718-95162015005000031
  • Sekulic, G., & Rempel, C. B. (2016). Evaluating the role of seed treatments in canola/oilseed rape production: Integrated pest management, pollinator health, and biodiversity. Plants, 5(3), 32. https://doi.org/10.3390/plants5030032
  • Sheibani, S., & Ahangar, A. G. (2013). Effect of tillage on soil biodiversity. Journal of Novel Applied Sciences, 2(8), 273–281.
  • Sidibé, Y., Foudi, S., Pascual, U., & Termansen, M. (2018). Adaptation to climate change in rainfed agriculture in the global south: Soil biodiversity as natural insurance. Ecological Economics, 146, 588–596. https://doi.org/10.1016/j.ecolecon.2017.12.017
  • Sirami, C., Gross, N., Baillod, A. B., Betrand, C., Carrié, R., Hass, A., Henckel, L., Miguet, P., Vuillot, C., Alignier, A., Girard, J., Batáry, P., Clough, Y., Violle, C., Giralt, D., Bota, G., Badenhausser, I., Lefebvre, G. … Fahrig, L. (2019). Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proceedings of the National Academy of Sciences, 116(33), 16442–16447. https://doi.org/10.1073/pnas.1906419116
  • Souza, R. C., Cantão, M. E., Vasconcelos, A. T., Nogueira, M. A., & Hungria, M. (2013). Soil metagenomics reveals differences under conventional and no-tillage with crop rotation or succession. Applied Soil Ecology, 72, 49–61. https://doi.org/10.1016/j.apsoil.2013.05.021
  • Stein-Bachinger, K., Gottwald, F., Haub, A., & Schmidt, E. (2021). To what extent does organic farming promote species richness and abundance in temperate climates? A review. Organic Agriculture, 11(1), 1–12. https://doi.org/10.1007/s13165-020-00279-2
  • Steinmann, H.-H., & Dobers, E. S. (2013). Spatio-temporal analysis of crop rotations and crop sequence patterns in Northern Germany: Potential implications on plant health and crop protection. Journal of Plant Diseases and Protection, 120(2), 85–94. https://doi.org/10.1007/BF03356458
  • Stojanovic, N., Tesic, M., Stavretovic, N., Petrovic, J., Lisica, A., & Matic, S. (2021). The roadside green spaces and their possibilities to modify microclimate conditions in the Urban environment. Fresenius Environmental Bulletin, 30(4), 3202–3210.
  • Świtek, S., Sawinska, Z., & Głowicka-Wołoszyn, R. (2019). A new approach to farm biodiversity assessment. Agronomy, 9(9), 551. https://doi.org/10.3390/agronomy9090551
  • Targetti, S., Viaggi, D., Cuming, D., Sarthou, J. P., & Choisis, J. P. (2012). Assessing the costs of measuring biodiversity: Methodological and empirical issues. Food Economics, 9(1–2), 2–9. https://doi.org/10.1080/16507541.2012.695118
  • Tasser, E., Rüdisser, J., Plaikner, M., Wezel, A., Stöckli, S., Vincent, A., Nitsch, H., Dubbert, M., Moos, V., Walde, J., & Bogner, D. (2019). A simple biodiversity assessment scheme supporting nature-friendly farm management. Ecological Indicators, 107, 105649. https://doi.org/10.1016/j.ecolind.2019.105649
  • Tayefeh, M., Sadeghi, S. M., Noorhosseini, S. A., Bacenetti, J., & Damalas, C. A. (2018). Environmental impact of rice production based on nitrogen fertilizer use. Environmental Science and Pollution Research, 25(16), 15885–15895. https://doi.org/10.1007/s11356-018-1788-6
  • Tobias, S., Conen, F., Duss, A., Wenzel, L. M., Buser, C., & Alewell, C. (2018). Soil sealing and unsealing: State of the art and examples. Land Degradation & Development, 29(6), 2015–2024. https://doi.org/10.1002/ldr.2919
  • Török, E., Zieger, S., Rosenthal, J., Földesi, R., Gallé, R., Tscharntke, T., & Batáry, P. (2021). Organic farming supports lower pest infestation, but fewer natural enemies than flower strips. Journal of Applied Ecology, 58(10), 2277–2286. https://doi.org/10.1111/1365-2664.13946
  • Tscharntke, T., Grass, I., Wanger, T. C., Westphal, C., & Batáry, P. (2021). Beyond organic farming–harnessing biodiversity-friendly landscapes. Trends in Ecology & Evolution, 36(10), 919–930. https://doi.org/10.1016/j.tree.2021.06.010
  • Tscharntke, T., Karp, D. S., Chaplin-Kramer, R., Batáry, P., DeClerck, F., Gratton, C., Hunt, L., Ives, A., Jonsson, M., Larsen, A., Martin, E. A., Martínez-Salinas, A., Meehan, T. D., O’Rourke, M., Poveda, K., Rosenheim, J. A., Rusch, A., Schellhorn, N. … Zhang, W. (2016). When natural habitat fails to enhance biological pest control–Five hypotheses. Biological Conservation, 204, 449–458. https://doi.org/10.1016/j.biocon.2016.10.001
  • Tscharntke, T., Tylianakis, J. M., Rand, T. A., Didham, R. K., Fahrig, L., Batáry, P., Bengtsson, J., Clough, Y., Crist, T. O., Dormann, C. F., Ewers, R. M., Fründ, J., Holt, R. D., Holzschuh, A., Klein, A.-M., Kleijn, D., Kremen, C., Landis, D. A., Westphal, C. (2014). Landscape moderation of biodiversity patterns and processes - eight hypotheses. Biological Reviews, 87(3), 661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x
  • Tschumi, M., Albrecht, M., Bärtschi, C., Collatz, J., Entling, M. H., & Jacot, K. (2016). Perennial, species-rich wildflower strips enhance pest control and crop yield. Agriculture, Ecosystems & Environment, 220, 97–103. https://doi.org/10.1016/j.agee.2016.01.001
  • Tschumi, M., Albrecht, M., Collatz, J., Dubsky, V., Entling, M. H., Najar‐Rodriguez, A. J., Jacot, K., & Kleijn, D. (2016). Tailored flower strips promote natural enemy biodiversity and pest control in potato crops. Journal of Applied Ecology, 53(4), 1169–1176. https://doi.org/10.1111/1365-2664.12653
  • Tsvetkov, I., Atanassov, A., Vlahova, M., Carlier, L., Christov, N., Lefort, F., Rusanov, K., Badjakov, I., Dincheva, I., Tchamitchian, M., Rakleova, G., Georgieva, L., Tamm, L., Iantcheva, A., Herforth-Rahmé, J., Paplomatas, E., & Atanassov, I. (2018). Plant organic farming research–current status and opportunities for future development. Biotechnology & Biotechnological Equipment, 32(2), 241–260. https://doi.org/10.1080/13102818.2018.1427509
  • Tuanmu, M. N., & Jetz, W. (2015). A global, remote sensing‐based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecology and Biogeography, 24(11), 1329–1339. https://doi.org/10.1111/geb.12365
  • Tzoulas, K., & James, P. (2010). Making biodiversity measures accessible to non-specialists: An innovative method for rapid assessment of urban biodiversity. Urban Ecosystems, 13(1), 113–127. https://doi.org/10.1007/s11252-009-0107-x
  • Udawatta, R. P., Rankoth, L., & Jose, S. (2019). Agroforestry and biodiversity. Sustainability, 11(10), 2879. https://doi.org/10.3390/su11102879
  • van Capelle, C., Schrader, S., & Brunotte, J. (2012). Tillage-induced changes in the functional diversity of soil biota–A review with a focus on German data. European Journal of Soil Biology, 50, 165–181. https://doi.org/10.1016/j.ejsobi.2012.02.005
  • Venter, Z. S., Jacobs, K., & Hawkins, H.-J. (2016). The impact of crop rotation on soil microbial diversity: A meta-analysis. Pedobiologia, 59(4), 215–223. https://doi.org/10.1016/j.pedobi.2016.04.001
  • Vidaller, C., & Dutoit, T. (2022). Ecosystem services in conventional farming systems. A review. Agronomy for Sustainable Development, 42(2), 1–14. https://doi.org/10.1007/s13593-021-00740-w
  • von Königslöw, V., Fornoff, F., & Klein, A.-M. (2021). Pollinator enhancement in agriculture: Comparing sown flower strips, hedges and sown hedge herb layers in apple orchard. Biodiversity and Conservation, 31(2), 433–451. https://doi.org/10.1007/s10531-021-02338-w
  • Wood, S. A., Karp, D. S., DeClerck, F., Kremen, C., Naeem, S., & Palm, C. A. (2015). Functional traits in agriculture: Agrobiodiversity and ecosystem services. Trends in Ecology & Evolution, 30(9), 531–539. https://doi.org/10.1016/j.tree.2015.06.013
  • Wright, A. J., Wardle, D. A., Callaway, R., & Gaxiola, A. (2017). The overlooked role of facilitation in biodiversity experiments. Trends in Ecology & Evolution, 32(5), 383–390. https://doi.org/10.1016/j.tree.2017.02.011
  • Yoon, M. Y., Cha, B., & Kim, J. C. (2013). Recent trends in studies on botanical fungicides in agriculture. Plant Pathology Journal, 29(1), 1. https://doi.org/10.5423/PPJ.RW.05.2012.0072
  • Zanin, A. R. A., Neves, D. C., Teodoro, L. P. R., da Silva Júnior, C. A., da Silva, S. P., Teodoro, P. E., & Baio, F. H. R. (2022). Reduction of pesticide application via real-time precision spraying. Scientific Reports, 12(1), 5638. https://doi.org/10.1038/s41598-022-09607-w