1,099
Views
0
CrossRef citations to date
0
Altmetric
Food Science & Technology

Antiviral activities of olive oil apigenin and taxifolin against SARS-CoV-2 RNA-dependent RNA polymerase (RdRP): In silico, pharmacokinetic, ADMET, and in-vitro approaches

ORCID Icon, , , , , , , , , , , ORCID Icon & ORCID Icon show all
Article: 2236828 | Received 27 Mar 2023, Accepted 11 Jul 2023, Published online: 29 Jul 2023

References

  • Abdelrheem, D. A., Rahman, A. A., Elsayed, K. N. M., Abd El-Mageed, H. R., Mohamed, H. S., & Ahmed, S. A. (2021). Isolation, characterization, in vitro anticancer activity, dft calculations, molecular docking, bioactivity score, drug-likeness and admet studies of eight phytoconstituents from brown alga sargassum platycarpum. Journal of Molecular Structure, 1225, 129245. https://doi.org/10.1016/j.molstruc.2020.129245
  • Afonine, P. V., Klaholz, B. P., Moriarty, N. W., Poon, B. K., Sobolev, O. V., Terwilliger, T. C., Adams, P. D., & Urzhumtsev, A. (2018). New tools for the analysis and validation of Cryo-EM maps and atomic models. Acta Crystallographica Section D: Structural Biology, 74(9), 814–16. https://doi.org/10.1107/S2059798318009324
  • Akrayi, H. F., & Tawfeeq, J. D. (2012). Antibacterial activity of Lepidium sativum and allium porrum extracts and juices against some gram positive and gram negative bacteria. Medical Journal of Islamic World Academy of Sciences, 20(1), 10–16. https://jag.journalagent.com/ias/pdfs/IAS_20_1_10_16.pdf
  • Al-Karmalawy, A. A., & Khattab, M. (2020). Molecular modelling of mebendazole polymorphs as a potential colchicine binding site inhibitor. New Journal of Chemistry, 44(33), 13990–13996. https://doi.org/10.1039/D0NJ02844D
  • Al-Mokadem, A. Z., Alnaggar, A. E.-A. M., Mancy, A. G., Sofy, A. R., Sofy, M. R., Mohamed, A. K. S. H., Abou Ghazala, M. M. A., El-Zabalawy, K. M., Salem, N. F. G., Elnosary, M. E., & Agha, M. S. (2022). Foliar application of chitosan and phosphorus alleviate the potato virus Y-Induced resistance by modulation of the reactive oxygen species, antioxidant defense system activity and gene expression in potato. Agronomy, 12(12), 3064. https://doi.org/10.3390/agronomy12123064
  • Almuhayawi, M. S., Alruhaili, M. H., Gattan, H. S., Alharbi, M. T., Nagshabandi, M. K., Al Jaouni, S. K., Selim, S., & Elnosary, M. E. (2023). In silico molecular modeling of cold pressed garden cress (Lepidium sativum L.) seed oil toward the binding pocket of antimicrobial resistance Staphylococcus aureus DNA-gyrase complexes. European Review for Medical & Pharmacological Sciences, 27(4), 1238–1247. https://doi.org/10.26355/eurrev_202302_31356
  • Amiot-Carlin, M. J. (2014). Olive oil and health effects: from epidemiological studies to the molecular mechanisms of phenolic fraction. OCL Oilseeds and Fats Crops and Lipids, 21(5), 1–8. https://doi.org/10.1051/ocl/2014029
  • Asmi, K. S., Lakshmi, T., Balusamy, S. R., & Parameswari, R. (2017). Therapeutic aspects of taxifolin–an update. Journal of Advanced Pharmacy Education & Research| Jul-Sep, (3), 7.
  • Bendini, A., Cerretani, L., Carrasco-Pancorbo, A., Gómez-Caravaca, A. M., Segura-Carretero, A., Fernández-Gutiérrez, A., & Lercker, G. (2007). Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade alessandra. Molecules, 12(8), 1679–1719. https://doi.org/10.3390/12081679
  • Bonoli, M., Montanucci, M., Toschi, T. G., & Lercker, G. (2003). Fast separation and determination of tyrosol, hydroxytyrosol and other phenolic compounds in extra-virgin olive oil by capillary zone electrophoresis with ultraviolet-diode array detection. Journal of Chromatography A, 1011(1–2), 163–172. https://doi.org/10.1016/S0021-9673(03)01100-2
  • Bulotta, S., Celano, M., Lepore, S. M., Montalcini, T., Pujia, A., & Russo, D. (2014). Beneficial effects of the olive oil phenolic components oleuropein and hydroxytyrosol: Focus on protection against cardiovascular and metabolic diseases. Journal of Translational Medicine, 12(1), 1–9. https://doi.org/10.1186/s12967-014-0219-9
  • Butler, M. S. (2004). The role of natural product chemistry in drug discovery. Journal of Natural Products, 67(12), 2141–2153. https://doi.org/10.1021/np040106y
  • Caramia, G., Gori, A., Valli, E., & Cerretani, L. (2012). Virgin olive oil in preventive medicine: From legend to epigenetics. European Journal of Lipid Science and Technology, 114(4), 375–388. https://doi.org/10.1002/ejlt.201100164
  • Cerretani, L., Gallina Toschi, T., & Bendini, A. (2009). Phenolic fraction of virgin olive oil: An overview on identified compounds and analytical methods for their determination. Functional Plant Science and Biotechnology, 3(Special issue), 69–80. https://hdl.handle.net/11585/82069
  • Chen, X., Li, H., Tian, L., Li, Q., Luo, J., & Zhang, Y. (2020). Analysis of the physicochemical properties of acaricides based on Lipinski’s rule of five. Journal of Computational Biology, 27, 1397–1406. https://doi.org/10.1089/cmb.2019.0323
  • Cicerale, S., Lucas, L., & Keast, R. (2010). Biological activities of phenolic compounds present in virgin olive oil. International Journal of Molecular Sciences, 11(2), 458–479. https://doi.org/10.3390/ijms11020458
  • Dai, W., Bi, J., Li, F., Wang, S., Huang, X., Meng, X., Sun, B., Wang, D., Kong, W., Jiang, C., & Su, W. (2019). Antiviral efficacy of flavonoids against enterovirus 71 infection in vitro and in newborn mice. Viruses, 11(7), 625. https://doi.org/10.3390/v11070625
  • Desideri, N., Conti, C., Sestili, I., Tomao, P., Stein, M. L., & Orsi, N. (1995). In Vitro evaluation of the anti-picornavirus activities of new synthetic flavonoids. Antiviral Chemistry and Chemotherapy, 6(5), 298–306. https://doi.org/10.1177/095632029500600503
  • Donalisio, M., Nana, H. M., Ngono Ngane, R. A., Gatsing, D., Tiabou Tchinda, A., Rovito, R., Cagno, V., Cagliero, C., Boyom, F. F., Rubiolo, P., Bicchi, C., & Lembo, D. (2013). In Vitro anti-Herpes simplex virus activity of crude extract of the roots of Nauclea latifolia Smith (Rubiaceae). BMC Complementary and Alternative Medicine, 13(1), 1–8. https://doi.org/10.1186/1472-6882-13-266
  • Elebeedy, D., Elkhatib, W. F., Kandeil, A., Ghanem, A., Kutkat, O., Alnajjar, R., Saleh, M. A., Abd El Maksoud, A. I., Badawy, I., & Al-Karmalawy, A. A. (2021). Anti-SARS-CoV-2 activities of tanshinone iia, carnosic acid, rosmarinic acid, salvianolic acid, baicalein, and glycyrrhetinic acid between computational and in vitro insights. RSC Advances 2021, 11(47), 29267–29286. https://doi.org/10.1039/D1RA05268C
  • Elfiky, A. A. (2017). Zika virus: Novel guanosine derivatives revealed strong binding and possible inhibition of the polymerase. Future Virology, 12(12), 721–728. https://doi.org/10.2217/fvl-2017-0081
  • Elfiky, A. A. (2019). Novel guanosine derivatives as anti-HCV NS5b polymerase: A QSAR and molecular docking study. Medicinal Chemistry, 15(2), 130–137. https://doi.org/10.2174/1573406414666181015152511
  • Elfiky, A. A. A.-H. (2020). Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sciences, 248, 117477. https://doi.org/10.1016/j.lfs.2020.117477
  • Elfiky, A. A., & Ismail, A. M. (2018). Molecular docking revealed the binding of nucleotide/side inhibitors to zika viral polymerase solved structures. SAR and QSAR in Environmental Research, 29(5), 409–418. https://doi.org/10.1080/1062936X.2018.1454981
  • El Gizawy, H. A., Boshra, S. A., Mostafa, A., Mahmoud, S. H., Ismail, M. I., Alsfouk, A. A., Taher, A. T., Al-Karmalawy, A. A., & Pimenta Dioica, M. (2021). Pimenta dioica (L.) merr bioactive constituents exert anti-SARS-CoV-2 and anti-inflammatory activities: Molecular docking and dynamics, in vitro, and in vivo studies. Molecules, 26(19), 5844. https://doi.org/10.3390/molecules26195844
  • Elnosary, M. E., Aboelmagd, H. A., Habaka, M. A., Salem, S. R., & El-Naggar, M. E. (2022). Synthesis of bee venom loaded chitosan nanoparticles for anti-MERS-COV and multi-drug resistance bacteria. International Journal of Biological Macromolecules, 224, 871–880. https://doi.org/10.1016/j.ijbiomac.2022.10.173
  • Elnosary, M., Aboelmagd, H., Sofy, M. R., Sofy, A., & Elshazly, E. (2022). Hamdy antiviral and antibacterial properties of synthesis silver nanoparticles with nigella arvensis aqueous extract. Egyptian Journal of Chemistry, 0(0), 0–0. https://doi.org/10.21608/ejchem.2022.159976.6894
  • Elshazly, E. H., Nasr, A., Elnosary, M. E., Gouda, G. A., Mohamed, H., & Song, Y. (2023). Identifying the Anti-MERS-CoV and anti-hcoV-229E potential drugs from the ginkgo biloba leaves extract and its eco-friendly synthesis of silver nanoparticles. Molecules, 28(3), 28. https://doi.org/10.3390/molecules28031375
  • Fidelis, Q. C., Faraone, I., Russo, D., Aragão Catunda-Jr, F. E., Vignola, L., de Carvalho, M. G., de Tommasi, N., & Milella, L. (2019). Chemical and biological insights of ouratea hexasperma (A. St.-Hil.) Baill.: A source of bioactive compounds with multifunctional properties. Natural Product Research, 33(10), 1500–1503. https://doi.org/10.1080/14786419.2017.1419227
  • Ganesan, A., & Barakat, K. (2017). Applications of computer-aided approaches in the development of hepatitis c antiviral agents. Expert Opinion on Drug Discovery, 12(4), 407–425. https://doi.org/10.1080/17460441.2017.1291628
  • Ganesan, S., Faris, A. N., Comstock, A. T., Wang, Q., Nanua, S., Hershenson, M. B., & Sajjan, U. S. (2012). Quercetin inhibits rhinovirus replication in vitro and in vivo. Antiviral Research, 94(3), 258–271. https://doi.org/10.1016/j.antiviral.2012.03.005
  • Gorzynik-Debicka, M., Przychodzen, P., Cappello, F., Kuban-Jankowska, A., Marino Gammazza, A., Knap, N., Wozniak, M., & Gorska-Ponikowska, M. (2018). Potential health benefits of olive oil and plant polyphenols. International Journal of Molecular Sciences, 19(3), 686. https://doi.org/10.3390/ijms19030686
  • Hakobyan, A., Arabyan, E., Avetisyan, A., Abroyan, L., Hakobyan, L., & Zakaryan, H. (2016). Apigenin inhibits African swine fever virus infection in vitro. Archives of Virology, 161(12), 3445–3453. https://doi.org/10.1007/s00705-016-3061-y
  • Jin, Y., Yang, H., Ji, W., Wu, W., Chen, S., Zhang, W., & Duan, G. V. (2020). Epidemiology, pathogenesis, and control of COVID-19. Viruses, 12(4), 372. https://doi.org/10.3390/v12040372
  • Kasende, O. E., Matondo, A., Muya, J. T., & Scheiner, S. (2017). Interactions between temozolomide and guanine and its S and Se‐substituted analogues. International Journal of Quantum Chemistry, 117(3), 157–169. https://doi.org/10.1002/qua.25294
  • Kaul, R., Paul, P., Kumar, S., Büsselberg, D., Dwivedi, V. D., & Chaari, A. (2021). Promising antiviral activities of natural flavonoids against SARS-CoV-2 targets: Systematic review. International Journal of Molecular Sciences 2021, 22(20), 11069. https://doi.org/10.3390/ijms222011069
  • Khattab, M., & Al‐Karmalawy, A. A. (2021). Revisiting activity of some nocodazole analogues as a potential anticancer drugs using molecular docking and DFT calculations. Frontiers in Chemistry, 9, 628398. https://doi.org/10.3389/fchem.2021.628398
  • Lim, R., Barker, G., Wall, C. A., & Lappas, M. (2013). Dietary phytophenols curcumin, naringenin and apigenin reduce infection-induced inflammatory and contractile pathways in human placenta, foetal membranes and myometrium. Molecular Human Reproduction, 19(7), 451–462. https://doi.org/10.1093/molehr/gat015
  • Mahmoud, I. S., Jarrar, Y. B., Alshaer, W., & Ismail, S. (2020). SARS-CoV-2 entry in host cells-multiple targets for treatment and prevention. Biochimie, 175, 93–98. https://doi.org/10.1016/j.biochi.2020.05.012
  • Majumder, D., Debnath, M., Sharma, K. N., Shekhawat, S. S., Prasad, G., Maiti, D., & Ramakrishna, S. (2022). Olive oil consumption can prevent non-communicable diseases and COVID-19: A Review. Current Pharmaceutical Biotechnology, 23(2), 261–275. https://doi.org/10.2174/1389201022666210412143553
  • Martin, K. W., & Ernst, E. (2003). Antiviral agents from plants and herbs: A systematic review. Antiviral Therapy, 8(2), 77–90. https://doi.org/10.1177/135965350300800201
  • Matondo, A., Dendera, W., Isamura, B. K., Ngbolua, K. T. N., Mambo, H. V. S., Muzomwe, M., & Mudogo, V. (2022). In silico drug repurposing of anticancer drug 5-FU and analogues against SARS-CoV-2 main protease: Molecular docking, molecular dynamics simulation, pharmacokinetics and chemical reactivity studies. Advances and Applications in Bioinformatics and Chemistry: AABC, 15, 59–77. https://doi.org/10.2147/AABC.S366111
  • Matondo, A., Kilembe, J. T., Ngoyi, E. M., Kabengele, C. N., Kasiama, G. N., Lengbiye, E. M., Mbadiko, C. M., Inkoto, C. L., Bongo, G. N., Gbolo, B. Z., Falanga, C. M., Mwanangombo, D. T., Opota, D. O., Tshibangu, D. S. T., Tshilanda, D. D., Ngbolua, K. T.-N., & Mpiana, P. T. (2021). Oleanolic acid, ursolic acid and apigenin from Ocimum basilicum as potential inhibitors of the SARS-CoV-2 main protease: A molecular docking study. International Journal of Pathogen Research, 6(2), 1–16. https://doi.org/10.9734/ijpr/2021/v6i230156
  • Mishra, C. B., Pandey, P., Sharma, R. D., Malik, M. Z., Mongre, R. K., Lynn, A. M., Prasad, R., Jeon, R., & Prakash, A. (2021). Identifying the natural polyphenol catechin as a multi-targeted agent against SARS-CoV-2 for the plausible therapy of COVID-19: An integrated computational approach. Briefings in Bioinformatics, 22(2), 1346–1360. https://doi.org/10.1093/bib/bbaa378
  • Ngbolua, J. K., Kilembe, J. T., Matondo, A., Ashande, C. M., Mukiza, J., Nzanzu, C. M., Ruphin, F. P., Baholy, R., Mpiana, P. T., & Mudogo, V. (2022). In silico studies on the interaction of four cytotoxic compounds with angiogenesis target protein HIF-1α and human androgen receptor and their ADMET properties. Bulletin of the National Research Centre, 46, 101. https://doi.org/10.1186/s42269-022-00793-1
  • Ngwa, W., Kumar, R., Thompson, D., Lyerly, W., Moore, R., Reid, T.-E., Lowe, H., & Toyang, N. Potential of flavonoid-inspired phytomedicines against COVID-19. Molecules, 2020(11), 25, 2707. https://doi.org/10.3390/molecules25112707
  • Norinder, U., & Bergström, C. A. S. (2006). Prediction of ADMET Properties. ChemMedchem: Chemistry Enabling Drug Discovery, 1(9), 920–937. https://doi.org/10.1002/cmdc.200600155
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 1–14. https://doi.org/10.1186/1758-2946-3-33
  • Owen, R. W., Giacosa, A., Hull, W. E., Haubner, R., Würtele, G., Spiegelhalder, B., & Bartsch, H. (2000). Olive-oil consumption and health: The possible role of antioxidants. The Lancet Oncology, 1(2), 107–112. https://doi.org/10.1016/S1470-2045(00)00015-2
  • Pauwels, R., Balzarini, J., Baba, M., Snoeck, R., Schols, D., Herdewijn, P., Desmyter, J., & De Clercq, E. (1988). Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. Journal of Virological Methods, 20(4), 309–321. https://doi.org/10.1016/0166-0934(88)90134-6
  • Perez-Martinez, P., Garcia-Rios, A., Delgado-Lista, J., Perez-Jimenez, F., & Lopez-Miranda, J. (2011). Mediterranean diet rich in olive oil and obesity, metabolic syndrome and diabetes mellitus. Current Pharmaceutical Design, 17(8), 769–777. https://doi.org/10.2174/138161211795428948
  • Piccolella, S., Crescente, G., Candela, L., & Pacifico, S. (2019). Nutraceutical polyphenols: New analytical challenges and opportunities. Journal of Pharmaceutical and Biomedical Analysis, 175, 112774. https://doi.org/10.1016/j.jpba.2019.07.022
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Pratama, M. R. F., Poerwono, H., & Siswodiharjo, S. (2019). ADMET properties of novel 5-O-Benzoylpinostrobin derivatives. Journal of Basic and Clinical Physiology and Pharmacology, 30(6), 30. https://doi.org/10.1515/jbcpp-2019-0251
  • Protti, Í. F., Rodrigues, D. R., Fonseca, S. K., Alves, R. J., de Oliveira, R. B., & Maltarollo, V. G. (2021). Do drug‐likeness rules apply to oral prodrugs? ChemMedChem 2021, 16(9), 1446–1456. https://doi.org/10.1002/cmdc.202000805
  • Qian, S., Fan, W., Qian, P., Zhang, D., Wei, Y., Chen, H., & Li, X. (2015). Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity. Viruses, 7(4), 1613–1626. https://doi.org/10.3390/v7041613
  • Rbaa, M., Oubihi, A., Hajji, H., Tüzün, B., Hichar, A., Ajana, E., Berdimurodov, M. A., Lakhrissi, A., Zarrouk, B. S., & Lakhrissi, B. (2021). Bioinformatics and biological evaluation of novel pyridine based on 8-hydroxyquinoline derivatives as antibacterial agents: DFT, molecular docking and ADME/T studies. Journal of Molecular Structure, 1244, 130934. https://doi.org/10.1016/j.molstruc.2021.130934
  • Reynolds, D., Huesemann, M., Edmundson, S., Sims, A., Hurst, B., Cady, S., Beirne, N., Freeman, J., Berger, A., & Gao, S. (2021). Viral inhibitors derived from macroalgae, microalgae, and cyanobacteria: A review of antiviral potential throughout pathogenesis. Algal Research, 57, 102331. https://doi.org/10.1016/j.algal.2021.102331
  • Russo, M., Moccia, S., Spagnuolo, C., Tedesco, I., & Russo, G. L. (2020). Roles of flavonoids against coronavirus infection. Chemico-Biological Interactions, 328, 109211. https://doi.org/10.1016/j.cbi.2020.109211
  • Scoditti, E., Calabriso, N., Massaro, M., Pellegrino, M., Storelli, C., Martines, G., De Caterina, R., & Carluccio, M. A. (2012). Mediterranean diet polyphenols reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human vascular endothelial cells: A potentially protective mechanism in atherosclerotic vascular disease and cancer. Archives of Biochemistry and Biophysics, 527(2), 81–89. https://doi.org/10.1016/j.abb.2012.05.003
  • Shibata, C., Ohno, M., Otsuka, M., Kishikawa, T., Goto, K., Muroyama, R., Kato, N., Yoshikawa, T., Takata, A., & Koike, K. (2014). The flavonoid apigenin inhibits hepatitis C virus replication by decreasing mature MicroRNA122 levels. Virology, 462, 42–48. https://doi.org/10.1016/j.virol.2014.05.024
  • Soltan, M. A., Elbassiouny, N., Gamal, H., Elkaeed, E. B., Eid, R. A., Eldeen, M. A., & Al-Karmalawy, A. A. (2021). In Silico prediction of a multitope vaccine against Moraxella catarrhalis: Reverse vaccinology and immunoinformatics. Vaccines, 9(6), 669. https://doi.org/10.3390/vaccines9060669
  • Song, Z., Xu, Y., Bao, L., Zhang, L., Yu, P., Qu, Y., Zhu, H., Zhao, W., Han, Y., & Qin, C. (2019). From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses, 11(1), 59. https://doi.org/10.3390/v11010059
  • Sunil, C., & Xu, B. (2019). An Insight into the health-promoting effects of taxifolin (dihydroquercetin). Phytochemistry, 166, 112066. https://doi.org/10.1016/j.phytochem.2019.112066
  • Tabti, H., Hajji, K., En-Nahli, F., Bouamrane, S., Lakhlifi, T., Ajana, M. A., & Bouachrine, M. (2021). Effects of partial substitution of rosemary distillation residues to oat hay on digestive aspects, milk production, and metabolic statute of Tunisian local goats. Tropical Animal Health and Production, 53(5). https://doi.org/10.1007/s11250-021-02908-8
  • Tapsell, L. C. (2014). Foods and food components in the Mediterranean diet: Supporting overall effects. BMC Medicine, 12(1), 1–3. https://doi.org/10.1186/1741-7015-12-100
  • Tong, J., Zhang, X., Luo, D., & Bian, S. (2021). Molecular design, molecular docking and ADMET study of cyclic sulfonamide derivatives as SARS-CoV-2 inhibitors. Chinese Journal of Analytical Chemistry, 49(12), 63–73. https://doi.org/10.1016/j.cjac.2021.09.006
  • Tshibangu, D. S. T., Matondo, A., Lengbiye, E. M., Inkoto, C. L., Ngoyi, E. M., Kabengele, C. N., Bongo, G. N., Gbolo, B. Z., Kilembe, J. T., Mwanangombo, D. T., Mbadiko, C. M., Mihigo, S. O., Tshilanda, D. D., Ngbolua, K.-T.-N., & Mpiana, P. T. (2020). Possible effect of aromatic plants and essential oils against COVID-19: Review of their antiviral activity. Journal of Complementary and Alternative Medical Research, 11(1), 10–22. https://doi.org/10.9734/jocamr/2020/v11i130175
  • Vicidomini, C., Roviello, V., & Roviello, G. N. (2021). Molecular Basis of the therapeutical potential of clove (Syzygium aromaticum L.) and clues to its anti-COVID-19 utility. Molecules 2021, 26(7), 1880. https://doi.org/10.3390/molecules26071880
  • Villa-Rodriguez, J. A., Kerimi, A., Abranko, L., Tumova, S., Ford, L., Blackburn, R. S., Rayner, C., & Williamson, G. (2018). Acute metabolic actions of the major polyphenols in chamomile: An in vitro mechanistic study on their potential to attenuate postprandial hyperglycaemia. Scientific Reports, 8(1), 1–14. https://doi.org/10.1038/s41598-018-23736-1
  • Wang, S., Yao, J., Zhou, B., Yang, J., Chaudry, M. T., Wang, M., Xiao, F., Li, Y., & Yin, W. (2018). Bacteriostatic effect of quercetin as an antibiotic alternative. Journal of Food Protection, 81(1), 68–78. https://doi.org/10.4315/0362-028X.JFP-17-214
  • Wani, T. A., Masoodi, F. A., Gani, A., Baba, W. N., Rahmanian, N., Akhter, R., Wani, I. A., & Ahmad, M. (2018). Olive oil and its principal bioactive compound: Hydroxytyrosol–A review of the recent literature. Trends in Food Science & Technology, 77, 77–90. https://doi.org/10.1016/j.tifs.2018.05.001
  • WHO, W.G.R. on T. and C. No Title. Retrieved from https://apps.who.int/iris/handle/10665/312342.
  • Wu, C.-C., Fang, C.-Y., Cheng, Y.-J., Hsu, H.-Y., Chou, S.-P., Huang, S.-Y., Tsai, C.-H., & Chen, J.-Y. (2017). Inhibition of Epstein-Barr virus reactivation by the flavonoid apigenin. Journal of Biomedical Science, 24(1), 1–13. https://doi.org/10.1186/s12929-016-0313-9
  • ZeinEldin, R. A., Ahmed, M. M., Hassanein, W. S., Elshafey, N., Sofy, A. R., Hamedo, H. A., & Elnosary, M. E. (2023). Diversity and distribution characteristics of viruses from soda lakes. Genes, 14(2), 14. https://doi.org/10.3390/genes14020323
  • Zhang, W., Qiao, H., Lv, Y., Wang, J., Chen, X., Hou, Y., Tan, R., Li, E., & Qiu, J. (2014). Apigenin inhibits enterovirus-71 infection by disrupting viral RNA association with trans-acting factors. PloS One, 9(10), e110429. https://doi.org/10.1371/journal.pone.0110429
  • Zumla, A., Chan, J. F. W., Azhar, E. I., Hui, D. S. C., & Yuen, K.-Y. (2016). Coronaviruses—drug discovery and therapeutic options. Nature Reviews Drug Discovery, 15(5), 327–347. https://doi.org/10.1038/nrd.2015.37