1,384
Views
0
CrossRef citations to date
0
Altmetric
Food Science & Technology

Determination of some antibiotic residues (tetracycline, oxytetracycline and penicillin-G) in beef sold for public consumption at Dukem and Bishoftu (Debre Zeyit) towns, central Ethiopia by LC/MS/MS

& ORCID Icon
Article: 2242633 | Received 09 Mar 2023, Accepted 26 Jul 2023, Published online: 03 Aug 2023

References

  • Adesokan, H. K., Agada, C. A., Adetunji, V. O., & Akanbi, I. M. (2013). Oxytetracycline and penicillin-G residues in cattle slaughtered in south-western Nigeria: Implications for livestock disease management and public health. Journal of the South African Veterinary Association, 84(1), 945–20. https://doi.org/10.4102/jsava.v84i1.945
  • Agmas, B., & Adugna, M. (2018). Antimicrobial residue occurrence and its public health risk of beef meat in Debre Tabor and Bahir Dar, Northwest Ethiopia. Veterinary World, 11(7), 902–908. https://doi.org/10.14202/vetworld.2018.902-908
  • Ahmad, R. S., Imran, A., & Hussain, M. B. (2018). Nutritional composition of meat. Meat Science and Nutrition. InTech. https://doi.org/10.5772/intechopen.77045
  • Albayoumi, M. A. (2015). Detection of antibiotic residues in broiler chickens in gaza strip [ Master’s thesis]. Islamic University-Gaza Deanship of Graduate Studies Faculty of Science Biological Sciences Master Program/Microbiology.
  • Alimentarius, C. (2009). Guidelines for the design and implementation of national regulatory food safety assurance programme associated with the use of veterinary drugs in food producing animals. CAC/GL, 71(2009), 1–42.
  • Alimentarius, C. (2018). Maximum residue limits (MRLs) and risk management recommendations (RMRs) for residues of veterinary drugs in foods. CAC/MRL No. 02/2018.
  • Andualem, T. (2019) Veterinary antiimicrobial utilization in Ethiopia. FAO/Ethiopia unpublished report, 2019.
  • Ang, J. J. D., Estaniel, S. L. S., & Guidote, L. P. (2017). Extraction and determination of tetracyclines in chicken meat by solid phase extraction and high performance liquid chromatography. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca-Agriculture, 63, 563–568.
  • Baynes, R. E., Dedonder, K., Kissell, L., Mzyk, D., Marmulak, T., Smith, G., & Riviere, J. E. (2016). Health concerns and management of select veterinary drug residues. Food and Chemical Toxicology, 88, 112–122. https://doi.org/10.1016/j.fct.2015.12.020
  • Bedada, A. H., & Zewde, B. M. (2012). Tetracycline residue levels in slaughtered beef cattle from three slaughterhouses in central Ethiopia. Global Veterinaria, 8(6), 546–554.
  • Beyene, T., & Tesega, B. (2014). Rational veterinary drug use: Its significance in public health. Journal of Veterinary Medicine and Animal Health, 6(12), 302–308.
  • Bhavsar, S. K., & Thaker, A. M.(2012). Pharmacokinetics of antimicrobials in food producing animals. In Readings advanced pharmacokineticsTheory, methods and applications (pp.158–178). https://doi.org/10.5772/33787
  • Birhanu, A. F. (2019). A review on ethiopian meat production trends, consumption and meat quality parameters. International Journal of Food Science and Agriculture, 3(4), 267–274. https://doi.org/10.26855/ijfsa.2019.12.002
  • Bittencourt, M. S., Martins, M. T., De Albuquerque, F. G. S., Barreto, F., & Hoff, R. (2012). High-throughput multiclass screening method for antibiotic residue analysis in meat using liquid chromatography-tandem mass spectrometry: A novel minimum sample preparation procedure. Food Additives & Contaminants: Part A, 29(4), 508–516. https://doi.org/10.1080/19440049.2011.606228
  • Bose, A. (2014). HPLC calibration process parameters in terms of system suitability test. Austin Chromatogr, 1(2), 1–4.
  • Bratinova, S., Raffael, B., & Simoneau, C. (2009). Guidelines for performance criteria and validation procedures of analytical methods used in controls of food contact materials. JRC Scientific and Technical Reports, 24105. https://doi.org/10.2788/49046
  • BSI. (2008). ISO11843-2: 2000. Capability of detection- Part 2: Methodology in the linear calibration case, 1–34.
  • Canton, L., Lanusse, C., & Moreno, L. (2021). Rational pharmacotherapy in infectious diseases: Issues related to drug residues in edible animal tissues. Animals, 11(10), 2878. https://doi.org/10.3390/ani11102878
  • Canzani, D., & Aldeek, F. (2017). Penicillin G’s function, metabolites, allergy, and resistance. Journal of Nutrition and Human Health, 1(1), 28–40. https://doi.org/10.35841/nutrition-human-health.1.1.28-40
  • Chung, A. (2007). () []. Validation of an ultra performance liquid chromatography tandem mass spectrometry (UPLC™/MS/MS) method for forensic toxicological analysis: Confirmation and quantitation of lysergic acid diethylamide (LSD) and its congeners in forensic samples [ Doctoral dissertation]. University of saskatchewan. http://hdl.handle.net/10388/etd-04202006-102806
  • Commission Decision 2002/657/EC. (2002). Implementing council directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Official Journal European Communities, L221, 8–36.
  • Commission Regulation (EU) No 37/2010. (2009, December 22). On pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. (OJL 15/1, 20.1.2010, pp. 1–72).
  • Dasenaki, M. (2015). Development of methods for the determination of veterinary drugs in food matrices by liquid chromatography–mass spectrometry [ Doctoral dissertation].
  • Delatour, T., Racault, L., Bessaire, T., & Desmarchelier, A. (2018). Screening of veterinary drug residues in food by LC-MS/MS. Background and challenges. Food Additives & Contaminants: Part A, 35(4), 633–646. https://doi.org/10.1080/19440049.2018.1426890
  • Diarra, M. S., & Malouin, F. (2014). Antibiotics in canadian poultry productions and anticipated alternatives. Frontiers in Microbiology, 5, 282. https://doi.org/10.3389/fmicb.2014.00282
  • DiRocco, M., Moloney, M., Haren, D., Gutierrez, M., Earley, S., Berendsen, B., Furey, A., & Danaher, M. (2020). Improving the chromatographic selectivity of β-lactam residue analysis in milk using phenyl-column chemistry prior to detection by tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 412(18), 4461–4475. https://doi.org/10.1007/s00216-020-02688-4
  • El-Ghareeb, W. R., Mulla, Z. S., Meligy, A. M. A., Darwish, W. S., & Edris, A. M. (2019). Antibiotic residue levels in camel, cattle and sheep tis sues using LC-MS/MS method. Journal of Animal and Plant Sciences, 29(4), 943–952.
  • EPA. (2016). Definition and procedure for the determination of the method detection limit, Revision 2. Environmental Protection Agency EPA.
  • European Food Safety Authority. (2021). Report for 2019 on the results from the monitoring of veterinary medicinal product residues. https://doi.org/10.2903/sp.efsa.2021.EN-1997
  • European Food Safety Authority. (2022). Report for 2020 on the results from the monitoring of veterinary medicinal product residues and other substances in live animals and animal products. https://doi.org/10.2903/sp.efsa.2022.EN-7143.
  • European Union. (2021). /808/EC. Commission implementing Regulation (EU) 2021/808 of 22 March 2021 on the performance of analytical methods for residues of pharmacologically active substances used in food-producing animals and on the interpretation of results as well as on the methods to be used for sampling and repealing decisions 2002/657/EC and 98/179/EC. Offical Journal of the European Union, 2021(L180), 84–109.
  • FAO/WHO. (2015). Codex alimentarius commission, procedural manual (24th ed). http://www.codexalimentarius.org
  • Forouzan, S., Rahimirad, A., Seyedkhoei, R., Asadzadeh, J., & Bahmani, M. (2014). Determination of antibiotic residues in the pasteurized milk produced in West Azerbaijan province, North West of Iran. Journal of Coastal Life Medicine, 2(4), 297–301.
  • Freitas, A., Leston, S., Barbosa, J., & Ramos, F. (2013). Liquid chromatography: Review on the last developments on the detection of antibiotics in food-producing animals. In Liquid chromatography – principles, technology and applications (pp. 99–139).
  • FSIS, U. (2018). Screening and confirmation of animal drug residues by UHPLC-MS-MS. 1–53. CLG-MRM1.08.
  • Gerber, P. J., Mottet, A., Opio, K. I., Falcucci, A., & Teillard, F. (2015). Environmental impacts of beef production: An overview of sustainability challenges and prospects. Meat Science, 109, 2–12. https://doi.org/10.1016/j.meatsci.2015.05.013
  • Henchion, M., Hayes, M., Mullen, A. M., Fenelon, M., & Tiwari, B. (2017). Future protein supply and demand: Strategies and factors influencing a sustainable equilibrium. Foods, 6(7), 53. https://doi.org/10.3390/foods6070053
  • Hird, S. J., Lau, B. P. Y., Schuhmacher, R., & Krska, R. (2014). Liquid chromatography-mass spectrometry for the determination of chemical contaminants in food. Trends in Analytical Chemistry, 59, 59–72. https://doi.org/10.1016/j.trac.2014.04.005
  • Khaled, A. (2020). Automated high-throughput analysis of multi-class multi-residue pharmaceutical drugs in animal tissue using solid phase microextraction [ Doctoral dissertation]. University of Waterloo.
  • Lee, H. C., Chen, C. M., Wei, J. T., & Chiu, H. Y. (2018). Analysis of veterinary drug residue monitoring results for commercial livestock products in Taiwan between 2011 and 2015. Journal of Food and Drug Analysis, 26(2), 565–571. https://doi.org/10.1016/j.jfda.2017.06.008
  • Lemke, T. L., & Williams, D. A. (Eds.). (2012). Foye’s principles of medicinal chemistry (7th ed.). Lippincott Williams & Wilkins.
  • Magnusson, U., Moodley, A., & Osbjer, K. (2021). Antimicrobial resistance at the livestock-human interface: Implications for veterinary services. Revue Scientifique et Technique de l’OIE, 40(2), 1–19. https://doi.org/10.20506/rst.40.2.3241
  • Mgonja, F., Mosha, R., Mabiki, F., & Choongo, K. (2017). Oxytetracycline residue levels in beef in Dodoma region, Tanzania. African Journal of Food Science, 11(2), 40–43. https://doi.org/10.5897/AJFS2016.1532
  • Mirkena, T., Mikecz, O., & Pica-Ciamarra, U. (2018). An integrated snapshot: Ethiopia, cattle sector. Africa sustainable livestock 2050. Food and Agriculture Organization of the United Nations.
  • Mohammed, N., Adare Mengistu, D., Abdurehman, A., Belina, D., & Mengistu, S. (2022). Determination of tetracycline residues in kidney and muscle of beef cattle slaughtered in Dire Dawa and Harar municipal abattoirs, Eastern Ethiopia. Environmental Health Insights, 16, 11786302221109720. https://doi.org/10.1177/11786302221109720
  • Navrátilová, P., Borkovcová, I., Dračková, M., Janštová, B., & Vorlová, L. (2009). Occurrence of tetracycline, chlortetracycline, and oxytetracycline residues in raw cow’s milk. Czech Journal of Food Sciences, 27, 379–385.
  • Nebot, C., Regal, P., Miranda, J., Cepeda, A., & Fente, C. (2012). Simultaneous determination of sulfonamides, penicillins and coccidiostats in pork by high-performance liquid chromatography–tandem mass spectrometry. Journal of Chromatographic Science, 50(5), 414–425. https://doi.org/10.1093/chromsci/bms021
  • Ngom, R. R. B. V., Garabed, R. B., Rumbeiha, W. K., Foyet, H. S., Schrunk, D. E., Shao, D., & Pagnah, A. Z. (2017). Penicillin-G and oxytetracycline residues in beef sold for human consumption in Maroua, Cameroon. International Journal of Food Contamination, 4(1), 17–27. https://doi.org/10.1186/s40550-017-0062-x
  • Padol, A. R., Malapure, C. D., Domple, V. D., & Kamdi, B. P. (2015). Occurrence, public health implications and detection of antibacterial drug residues in cow milk. Environmental We International Journal Science Technology, 10(2015), 7–28.
  • Pena, A., Lino, C. M., Alonso, R., & Barcelo, D. (2007). Determination of tetracycline antibiotic residues in edible swine tissues by liquid chromatography with spectrofluorometric detection and confirmation by mass spectrometry. Journal of Agricultural and Food Chemistry, 55(13), 4973–4979. https://doi.org/10.1021/jf070398j
  • Peng, M., Salaheen, S., & Biswas, D. (2014). Animal health: Global antibiotic issues. In Encyclopedia of agriculture and food systems (pp. 346–357). Elsevier Inc.
  • Peris‐Vicente, J., Esteve‐Romero, J., & Carda‐Broch, S. (2015). Validation of analytical methods based on chromatographic techniques: An overview. Analytical Separation Science, 1757–1808.
  • Schwaiger, B. (2017). Development and validation of a routine UHPLC-MS/MS method for determination of veterinary drug residues in animal derived food stuff [ Doctoral dissertation]. uniwien. https://youtu.be/woWUkVX34Q0
  • Singh, S., Shukla, S., Tandia, N., Kumar, N., & Paliwal, R. (2014). Antibiotic residues: A global challenge. Pharma Science Monitor, 5(3), 184–197.
  • Song, C., Zhang, C., Fan, L., Qiu, L., Wu, W., Meng, S., Hu, G., Kamira, B., & Chen, J. (2016). Occurrence of antibiotics and their impacts to primary productivity in fishponds around Tai Lake, China. Chemosphere, 161, 127–135. https://doi.org/10.1016/j.chemosphere.2016.07.009
  • Thrusfield, M. V., Christley, R., Brown, H., Diggle, P. J., French, N., Howe, K., Kelly, A., Sargeant, J., & Wood, H. (2018). Veterinary epidemiology (4th ed.). John Wiley & Sons Ltd.
  • U.S. Department of Agriculture Food Safety Inspection Service, USDA FSIS. (2019) . National residue program for meat, poultry, and egg products FY 2019 residue sample results. Food Safety and Inspection Service Office of Public Health Science.
  • Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649–5654. https://doi.org/10.1073/pnas.1503141112
  • Ventola, C. L. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. Pharmacy and Therapeutics, 40(4), 277–283.
  • Verdon, E., Hurtaud-Pessel, D., Sanders, P., & Sanders, P. (2006). Proficiency study for the determination of nitrofuran metabolites in shrimps. Food Additives & Contaminants, 23(6), 569–578. https://doi.org/10.1080/02652030500460534
  • Wang, B., Xie, K., & Lee, K. (2021). Veterinary drug residues in animal-derived foods: Sample preparation and analytical methods. Foods, 10(3), 555–586. https://doi.org/10.3390/foods10030555
  • World Health Organization. (2011) . Tackling antibiotic resistance from a food safety perspective in Europe. World Health Organization. Regional Office for Europe.
  • Young, M. S., & Tran, K. (2015). Oasis PRiME HLB cartridge for effective cleanup of meat extracts prior to multi-residue veterinary drug UPLC-MS analysis. Waters Application, 1–3.
  • Zeleny, R., Ulberth, F., Gowik, P., Polzer, J., van Ginkel, L. A., & Emons, H. (2006). Developing new reference materials for effective veterinary drug-residue testing in food-producing animals. TrAc Trends in Analytical Chemistry, 25(9), 927–936. https://doi.org/10.1016/j.trac.2006.04.011
  • Zhang, Y., Lu, J., Yan, Y., Liu, J., & Wang, M. (2021). Antibiotic residues in cattle and sheep meat and human exposure assessment in southern Xinjiang, China. Food Science & Nutrition, 9(11), 6152–6161. https://doi.org/10.1002/fsn3.2568