964
Views
0
CrossRef citations to date
0
Altmetric
SOIL & CROP SCIENCES

Genetic diversity of sugarcane (Saccharum spp.) genotypes based on agro-morphological and biochemical traits

ORCID Icon, &
Article: 2254141 | Received 01 May 2023, Accepted 29 Aug 2023, Published online: 18 Sep 2023

References

  • Abdul, Q. K., Kiya, A. T., & Berhanu, L. R. (2017). A study on morphological characters of introduced sugarcane varieties (Saccharum spp., hybrid) in Ethiopia. International Journal of Plant Breeding and Genetics, 11(1), 1–26. https://doi.org/10.3923/ijpbg.2017.1.12
  • Abera, D., Mengistu, B., Yohannes, M., Endris, Y., & Zeleke, T. (2016). Determination of crop Water Requirements of sugarcane and Soybean Intercropping at Metahara sugar estate. Advances in Crop Science and Technology, 4(5), 1–4. https://doi.org/10.4172/2329-8863.1000241
  • Afghan, S., Ehsan Khan, M., Raza Arshad, W., Bukhsh Malik, K., & Nikpay, A. (2023). Economic Importance and Yield Potential of Sugarcane in Pakistan. Sugarcane-its products and sustainability, 1–134. https://doi.org/10.5772/intechopen.105517
  • Alam, M. N., Ujjal, K. N., Karim, K. M. R., Ahmed, M. M., & Mitul, R. Y. (2017). Genetic variability of exotic sugarcane genotypes. Hindawi Scientifica, 2017, 1–10. https://doi.org/10.1155/2017/5202913
  • Amalraj, V. A., & Balasundaram, N. (2006). On the taxonomy of the members of ‘Saccharum complex.’ Genetic Resources and Crop Evolution, 53(1), 31–41. https://doi.org/10.1007/s10722-004-1581-1
  • Anonymous. (2014). Investment opportunity in sugarcane plantation in Ethiopia. Embasy of the Federal Democratic Republic of Ethiopia, New Dehli, India.
  • Belay, T., Gedebo, A., & Tena, E. (2023). Variability, heritability and genetic advance in sugarcane (Saccharum spp. hybrid) genotypes. Cogent Food & Agriculture, 9(1), 1–16. https://doi.org/10.1080/23311932.2023.2194482
  • Berding, N., Hogarth, M., & Cox, M. (2004). Plant improvement of sugarcane. In James, G. (Ed.), Sugarcane: World agricultural series, (2nd ed) (pp. 1–224). Blackwell Science Ltd.
  • Berding, N., & Skinner, J. C. (1987). Traditional breeding methods. In Copersucar International Sugarcane Breeding Workshop (pp. 269–320). Copersucar.
  • Birru, E. (2016). Sugarcane Industry Overview and energy Efficiency Considerations. Literature Survey document (Report no. 01/2016), (01). KTH School of Industrial Engineering and Management Department of Energy Technology Division of Heat and Power Technology SE-100 44 STOCKHOLM. https://www.diva-portal.org.
  • Chen, Z., Qin, C., Wang, M., Liao, F., Liao, Q., Liu, X., Yangrui, L., Lakshmanan, P., Long, M., & Huang, D. (2019). Ethylene-mediated improvement in sucrose accumulation in ripening sugarcane involves increased sink strength. BMC Plant Biology, 2019(19), 285. https://doi.org/10.1186/s12870-019-1882-z
  • Cox, M. C., & Hansen, P. B. (1995) Productivity trends in southern and central regions and the impact of new varieties. In Proceedings of the Australian Society of Sugar Cane Technologists 17 (pp. 1–7).
  • Dabholkar, A. R. (1992). Estimates of biometrical genetics. Concept Publishing Company.
  • DaCosta, M. L. M., Amorim, L. L. B., Onofre, A. V., deMelo LJT, deOliveira MBM, deCarvalho, R., & Benko-Iseppon, A. M. (2011). Assessment of genetic diversity in contrasting sugarcane varieties using inter-simple sequence repeat (ISSR) markers. American Journal of Plant Sciences, 2(3), 425–432. https://doi.org/10.4236/ajps.2011.23048
  • Ekpelikpeze, O. S., Dansi, A., Agbangla, C., Akoegninou, A., & Sanni, A. (2016). Biochemical Characterization of sugarcane varieties cultivated in Benin.Int. International Journal of Current Microbiology and Applied Sciences, 5(2), 368–379. https://doi.org/10.20546/ijcmas.2016.502.042
  • Esayas, T. G., Firew, M., & Amsalu, A. (2018). Sugarcane landraces of Ethiopia: Germplasm collection and analysis of Regional diversity and Distribution. Hindawi, Advances in Agriculture, 2018, 1–10. https://doi.org/10.1155/2018/7920724
  • Esayas, E., Mekbib, F., & Ayana, A. (2016). Genetic diversity of quantitative traits of sugarcane genotypes in Ethiopia. American Journal of Plant Sciences, 2016(7), 1498–1520. https://dx.doi.org/10.4236/ajps.2016.710142
  • Esayas, T., Mekbib, F., & Ayana, A. (2016a). Correlation and Path Coefficient Analyses in sugarcane genotypes of Ethiopia. American Journal of Plant Sciences, 7(10), 1490–1497. https://doi.org/10.4236/ajps.2016.710141
  • Esayas, T., Mekbib, F., & Ayana, A. (2016b). Heritability and correlation among sugarcane (Saccharum spp.) yield and some agronomic and sugar Quality traits in Ethiopia. American Journal of Plant Sciences, 7(10), 1453–1477. https://doi.org/10.4236/ajps.2016.710139
  • ESDA (Ethiopian Sugar Development Agency). (2009) Performance Report. In Proceedings of Ethiopian Sugar Industry Biennial Conference 1, (pp. 186–197).
  • Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). Addison Wesley Longma, Harlow.
  • FAO. (2020) . Sustainable food and agriculture.Fao.org/faostat. FAO Statistics Division website.
  • FAO. (2021). Production: Crops & livestock products. https://www.fao.org/faostat/en/#data/QCL.
  • FAOSTAT. (2019). Food and Agriculture Organization of the United States of America. World sugarcane production statistics. https://www.fao.org/faostat/en/#dataFAOSTAT.
  • Fernandes, T. G., & Griffin. (2016). Introduction and uses, Safety Assessment of Transgenic Organisms in the environment: OECD Consensus Documents, pp. 69–154. https://www.oecd-ilibrary.org/docserver/9789264253421-5.
  • Feyissa, T., Tadesse, N., Abiy, G., Zinaw, D., Netsanet, A., & Yeshimebet, T. (2014). Genetic variability and heritability of ten exotic sugarcane genotypes at Wonji sugar estate of Ethiopia Global Advanced. Research Journal of Physical and Applied Sciences, 3(4), 1–4. https://www.garj.org/garjpas/index.htm
  • Gaddisa, F., Abebe, M., & Bekele, T. (2021). Agro-morphological traits-based genetic diversity assessment in Ethiopian barley (Hordeum vulgare L.) landrace collections from Bale highlands, Southeast Ethiopia. Agric & Food Secure, 10(58), 1–14. https://doi.org/10.1186/s40066-021-00335-4
  • Gan, G., Ma, C., & Wu, J. (2007). Data clustering Theory, Algorithms, and Applications. In ASA SIAM series on Statistics and Applied Probability. https://doi.org/10.1137/1.9780898718348
  • Govindaraj, M., Vetriventhan, M., & Srinivasan, M. (2015). Importance of genetic diversity Assessment in crop plants and its Recent Advances: An Overview of its Analytical Perspectives. Genetics Research International, 2015, 1–14. https://doi.org/10.1155/2015/431487
  • Gowda, S. N. S., Saravanan, K., & Ravishankar, C. R. (2016). Genetic variability, heritability and genetic advance in selected clones of sugarcane. Plant Archives, 2(16), 700–704.
  • GRIN. (2004). The germplasm Resources information Network (GRIN), http://www.ars-grin.gov.
  • Heaton, E. A., Dohleman, F. G., & Long, S. P. (2008). Meeting US biofuel goals with less land: The potential of Miscanthus. Global Change Biology, 14(9), 2000–2014. https://doi.org/10.1111/j.1365-2486.2008.01662.x
  • Hogarth, D. M. (1976). New varieties lift sugar production. Producers Review, 66(10), 21–22.
  • Ittah, M. A., & Obok, E. E. (2019). Breeding potential and Multivariate Analyses of morphological and yield traits in Industrial sugarcane (Saccharum officinarum L.) Accessions in a Humid Tropical Agroecology. International Journal of Plant & Soil Science, 27(5), 1–10. https://doi.org/10.9734/IJPSS/2019/v27i530087
  • Kandel, A., Yang, X., Song, J., & Wang, J. (2018). Potentials, challenges, and genetic and genomic resources for sugarcane biomass improvement. Frontiers in Plant Science, 9, 1–14. https://doi.org/10.3389/fpls.2018.00151
  • Kassa, H. (2010). Analytical methods for routine anaysis of factory products. In Handbook of laboratory methods and chemical control of Ethiopian sugar factories (pp. 1–341). ESDAR- Ethiopian Sugar Development Agencysearch and Development.
  • Katia, A. F.-R., Hernández-Rosas, F., Figueroa-Sandoval, B., Velasco-Velasco, J., & Aguilar Rivera, N. (2019). What has been the Focus of sugarcane Research? A Bibliometric Overview. International Journal of Environmental Research and Public Health, 16(18), 1–15. https://doi.org/10.3390/ijerph16183326
  • Kebede, S., Ambachew, D., & Firehun, G. (2013). Trends of sugar industry development in Ethiopia: Challenges and prospects. Ethiopian Science Academy.
  • Kumar, P., Pandey, S. S., Kumar, B., Kamat, D. N., & Kumar, M. (2018). Genetic variability, heritability and genetic advance of quantitative traits in sugarcane. International Journal of Chemical Studies, 6(3), 3569–3572.
  • Lance, G. N., & Williams, W. T. (1967). A general theory of classificatory sorting strategies ii. Clustering Systems the Computer Journal, 10(3), 271–277. https://doi.org/10.1093/comjnl/10.3.271
  • Meade, G., & Chen, J. (1977). Cane sugar handbook. Cane Sugar Handbook.
  • Mebrahtom, F., Mekbib, F., & Abraha, E. (2016). Multivariate analysis of sugar yield contributing traits in sugarcane (Saccharum officinarum.L), in Ethiopia. African Journal of Plant Science, 10(8), 145–156. https://doi.org/10.5897/AJPS2016.1419
  • Melaku, T., Esayas, T., & Mulugeta, K. (2022). Characterization and Estimation of diversity of sugarcane (Saccharum officinarum) genotypes based on Qualitative morphological traits. A Pre-Print on Research Square, 1–17. https://doi.org/10.21203/rs.3.rs-1905952/v1
  • Mondini, L., Noorani, A., & Pagnotta, M. A. (2009). Assessing plant genetic diversity by molecular tools. Diversity, 1(1), 19–35. https://doi.org/10.3390/d1010019
  • Naturland, E. V. (2001). Organic Farming in the Tropics and Subtropics. Pineapple. Special section: Organic Cultivation of sugar cane. Kleinhaderner Weg. 1 82166 Gräfelfing, Germany website: www.naturland.de.
  • Pandey, D., Singh, S. P., Jeena, A. S., Khan, K. A., Negi, T. A., & Koujalagi, D. (2018). Study of genetic variability, heritability and genetic advance for various yield and Quality traits in sugarcane genotypes (Saccharum officinarum). International Journal of Current Microbiology and Applied Sciences, 7(4), 1464–1472. https://doi.org/10.20546/ijcmas.2018.704.165
  • Plaza-Diaz, J., & Gil, A. (2016). Encyclopedia of Food and Health. Dietary Importance. https://doi.org/10.1016/B978-0-12-384947-2.00668-1
  • Plucknett, D. L., & Smith, N. J. H. (1986). Sustaining agricultural yields. BioScience, 36(1), 40–45. https://doi.org/10.2307/1309796
  • Racedo, J., Gutiérrez, L., Francisca Perera, M., Ostengo, S., Mariano Pardo, E., Cuenya, M. I., Bjorn, W., & Castagnaro, A. P. (2016). Genome-wide association mapping of quantitative traits in a breeding population of sugarcane. BMC Plant Biology, 16(1), 1–17. https://doi.org/10.1186/s12870-016-0829-x
  • Ram, B., & Hemaprabha, G. (2005). Genetic divergence of sugar yield and its components in flowering type Saccharum officinarum clones. Agricultural Science Digest, 25(2), 118–120.
  • Rewati, R. C., & Joshi, D. K. (2005). Correlation and Path Coefficient Analyses in sugarcane. Sugarcane Research Programme-NARC, Jitpur-Bara-Nepal. Journal of Nepal Agricultural Research Council, 6, 25–26. https://doi.org/10.3126/narj/.v6i0.3340
  • Rezene, F. (2009). The Status of Biofuels in Ethiopia: Opportunities and Challenges. In IUCN Regional Workshop on Bio-fuel Production and Invasive Species 20-22 April 2009
  • Ruggeri, G., & Corsi, S. (2019). An analysis of the Fairtrade cane sugar small producer organizations network. Journal of Cleaner Production, 240(3), 118191. https://doi.org/10.1016/j.jclepro.2019.118191
  • Selman-Housein, G., & Miranda, F. (2000). Developments in plant Genetics and breeding: Plant genetic Engineering towards the third Millennium. In Proceedings of the International Symposium on Plant Genetic Engineering 5 (pp. 1–272). 6-10 December 1999
  • Semiea, T. K., Thapat, S., & Shabbir, H. G. (2019). The impact of sugarcane production on biodiversity related to land use change in Ethiopia. Global Ecology and Conservation, 18, e00650. https://doi.org/10.1016/j.gecco.2019.e00650
  • Simmonds, N. W. (1979). Principles of crop improvement. Longman.
  • Sumbele, S. A., Eteckji Fonkeng, E., Akongte, P., Nkumbe Ndille, C., & Henry, A. (2021). Characterization of sugarcane germplasm collection and its potential utilization for evaluation of quantitative traits. African Journal of Agricultural Research, 17(2), 273–282. https://doi.org/10.5897/AJAR2020.14799
  • Tai, P. Y. P., & Miller, J. D. (2001). A core collection for Saccharum spontaneum L. from the world collection of sugarcane. Crop Science Society of America, 41(3), 879–885. https://doi.org/10.2135/cropsci2001.413879x
  • Teklemariam, M. (1991). Sugar industry development in Ethiopia & its economic impact. ActaHortic, 270(270), 49–56. 5. https://doi.org/10.17660/ActaHortic.1991.270.5
  • Tesfaye, W. (2021). Long term sugarcane cultivation effect on selected physical and hydraulic properties of soils at three Ethiopian sugarcane estates. Advances in Crop Science and Technology, 9, 479. http://doi.org/10.11648/j.ajpb.20210603.14
  • Wang, J., Nayak, S., Karen Koch, K., & Ray Ming, R. (2013). Carbon partitioning in sugarcane (Saccharum species). Frontiers in Plant Science, 4, 18 June 2013. https://doi.org/10.3389/fpls.2013.00201
  • Yang, X., Luo, Z., Todd, J., Sood, S., & Wang, J. (2020). Genome-wide association study of multiple yield traits in a diversity panel of polyploid sugarcane (Saccharum spp.). The Plant Genome, 13(1), 1–1. https://doi.org/10.1002/tpg2.20006