217
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Sea urchins like Zinc oxide nanometric mitigating Meloidogyne incognita infection in eggplant

ORCID Icon, ORCID Icon, , , , , & ORCID Icon show all
Article: 2366396 | Received 18 Dec 2023, Accepted 06 Jun 2024, Published online: 19 Jun 2024

References

  • Abrantes, I. M. O., & Santos, M. (1989). Technique for preparing perineal patterns of root-knot nematodes for scanning electron microscopy. Journal of Nematology, 21(1), 1–16.
  • Afzal, A., & Mukhtar, T. (2024). Revolutionizing nematode management to achieve global food security goals – An overview. Heliyon, 10(3), e25325. https://doi.org/10.1016/j.heliyon.2024.e25325
  • Akhter, G., Khan, A., Ali, S. G., Khan, T. A., Siddiqi, K. S., & Khan, H. M. (2020). Antibacterial and nematicidal properties of biosynthesised Cu nanoparticles using extract of holoparasitic plant. SN Applied Sciences, 2(7), 1268. https://doi.org/10.1007/s42452-020-3068-6
  • Al-Dhabi, N. A., & Valan Arasu, M. (2018). Environmentally-friendly green approach for the production of zinc oxide nanoparticles and their anti-fungal, ovicidal, and larvicidal properties. Nanomaterials, 8(7), 500. https://doi.org/10.3390/nano8070500
  • Almutairi, F. M., Khan, A., Ajmal, M. R., Khan, R. H., Khan, M. F., Lal, H., Ullah, M. F., Ahmad, F., Ahamad, L., Khan, A., Arif, H., & Ayaz Ahmad, M. (2022). Phytochemical analysis and binding interaction of cotton seed cake derived compounds with the target protein of Meloidogyne incognita for nematicidal evaluation. Life, 12(12), 2109. https://doi.org/10.3390/life12122109
  • Altammar, K. A. (2023). A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Frontiers in Microbiology, 14, 1155622. https://doi.org/10.3389/fmicb.2023.1155622
  • Amalraj, A. S., Dharani, A. P., Inbaraj, P. F. H., Sivakumar, V., & Senguttuvan, G. (2015). Influence of pH on structural, morphological and optical properties of chemically ­deposited Nanocrystalline ZnO Thin Films. Journal of Materials Science, 26(11), 8877–8886. https://doi.org/10.1007/s10854-015-3568-0
  • Applerot, G., Lellouche, J., Lipovsky, A., Nitzan, Y., Lubart, R., Gedanken, A., & Banin, E. (2012). Understanding the antibacterial mechanism of CuO nanoparticles: Revealing the route of induced oxidative stress. Small, 8(21), 3326–3337. https://doi.org/10.1002/smll.201200772
  • Baig, N., Kammakakam, I., & Falath, W. (2021). Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2(6), 1821–1871. https://doi.org/10.1039/D0MA00807A
  • Balashanmugam, P., & Kalaichelvan, P. T. (2015). Biosynthesis characterization of silver nanoparticles using Cassia roxburghii DC. aqueous extract, and coated on cotton cloth for effective antibacterial activity. International Journal of Nanomedicine, 10(Suppl 1), 87–97. https://doi.org/10.2147/IJN.S79984
  • Baldwin, J. G., & Bell, A. H. (1981). Pararotylenchus n. gen. (Pararotylenchinae n. subfam., Hoplolaimidae) with six new species and two new combinations. Journal of Nematology, 13(2), 111–128.
  • Balesdent, M. H., Daverdin, G. G., Gout, L. L., Aubertot, J.N., Pinochet, X. X., & Rouxel, T. T. (2012). Molecular evolution of the AvrLm7 avirulence gene of Leptosphaeria maculans under resistance gene selection in the field is driven by its genomic location, sexual reproduction, and cropping practices. Plant Resistance Sustainability International Conference, Oct 2012, La Collesur Loup, France, pp. 54–54.
  • Behreus, A. S., & Karbeur, L. (1953). Determination of LD50. Archiv Fur Experimentelle Pathologie Und Pharmakologie, 28, 177–183.
  • Brown, J. G. (2012). X-rays and their applications. Springer Science & Business Media.
  • Bybd, D. W., Jr, Kirkpatrick, T., & Barker, K. (1983). An improved technique for clearing and staining plant tissues for the detection of nematodes. Journal of Nematology, 15(1), 142–143.
  • Caboni, P., Saba, M., Tocco, G., Casu, L., Murgia, A., Maxia, A., Menkissoglu-Spiroudi, U., & Ntalli, N. (2013). Nematicidal activity of mint aqueous extracts against the root-knot nematode Meloidogyne incognita. Journal of Agricultural and Food Chemistry, 61(41), 9784–9788. https://doi.org/10.1021/jf403684h
  • Cardozo, T. R., De Carli, R. F., Seeber, A., Flores, W. H., da Rosa, J. A., Kotzal, Q. S., Lehmann, M., da Silva, F. R., & Dihl, R. R. (2019). Genotoxicity of zinc oxide nanoparticles: An in vivo and in silico study. Toxicology Research, 8(2), 277–286. https://doi.org/10.1039/C8TX00255J
  • Ch, G., Ntalli, N., Menkissoglu-Spiroudi, U., & Dendrinou-Samara, C. (2019). Essential metal-based nanoparticles (Copper/Iron NPs) as potent nematicidal agents against Meloidogyne spp. Journal of Nanotechnology Research, 01(02), 44–58. https://doi.org/10.26502/jnr.2688-8521004
  • Cheng, B., Shi, W., Russell-Tanner, J. M., Zhang, L., & Samulski, E. T. (2006). Synthesis of variable-aspect-ratio, single-crystalline ZnO nanostructures. Inorganic Chemistry, 45(3), 1208–1214. https://doi.org/10.1021/ic051786a
  • Daniel, A. I., Keyster, M., & Klein, A. (2023). Biogenic zinc oxide nanoparticles: A viable agricultural tool to control plant pathogenic fungi and its potential effects on soil and plants. The Science of the Total Environment, 897, 165483. https://doi.org/10.1016/j.scitotenv.2023.165483
  • Djurišić, A. B., Chen, X., Leung, Y. H., & Ng, A. M. C. (2012). ZnO nanostructures: Growth, properties and applications. Journal of Materials Chemistry, 22(14), 6526–6535. https://doi.org/10.1039/c2jm15548f
  • Dutta, T., Bagchi, D., Bera, A., Das, S., Adhikari, T., & Pal, S. K. (2019). Surface engineered ZnO-humic/citrate interfaces: Photoinduced charge carrier dynamics and potential application for smart and sustained delivery of Zn micronutrient. ACS Sustainable Chemistry & Engineering, 7, 10920–10930.
  • El-Ansary, M. S. M., Hamouda, R. A., & Elshamy, M. M. (2021). Using biosynthesized zinc oxide nanoparticles as a pesticide to alleviate the toxicity on banana infested with parasitic-nematode. Waste and Biomass Valorization, 13, 405–415. https://doi.org/10.1007/s12649-021-01527-6
  • El-Ansary, M. S. M., Hamouda, R. A. F., & Ahmed-Farid, O. A. (2021). Bioremediation of Oxamyl compounds by Algae: Description and traits of root-knot nematode control. Waste and Biomass Valorization, 12(1), 251–261. https://doi.org/10.1007/s12649-020-00950-5
  • El-Ashry, R. M., El-Saadony, M. T., El-Sobki, A. E. A., El-Tahan, A. M., Al-Otaibi, S., El-Shehawi, A. M., Saad, A. M., & Elshaer, N. (2021). Biological silicon nanoparticles maximize the efficiency of nematicides against biotic stress induced by Meloidogyne incognita in eggplant. Saudi Journal of Biological Sciences, 29(2), 920–932. https://doi.org/10.1016/j.sjbs.2021.10.013
  • Elkobrosy, D. H., Abdelsalam, N. R., El-Saedy, M. A., Shama, S., & Hafez, E. E. (2020). The effect of cyst nematode (Globodera rostochiensis) isolate ddh1 on gene expression in systemic leaves of potato plant. Journal of Microbiology, Biotechnology and Food Sciences, 10(1), 93–97. https://doi.org/10.15414/jmbfs.2020.10.1.93-97
  • Ellegaard-Jensen, L., Jensen, K. A., & Johansen, A. (2012). Nano-silver induces dose-response effects on the nematode Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 80, 216–223. https://doi.org/10.1016/j.ecoenv.2012.03.003
  • El-Rokiek, K. G., & El-Nagdi, W. M. (2011). Dual effects of leaf extracts of Eucalyptus citriodora on controlling purslane and root-knot nematode in sunflower. Journal of Plant Protection Research, 51(2), 121–129. https://doi.org/10.2478/v10045-011-0021-0
  • Elshafie, H. S., Osman, A., El-Saber, M. M., Camele, I., & Abbas, E. (2023). Antifungal activity of green and chemically synthesized ZnO nanoparticles against Alternaria citri, the causal agent citrus black rot. The Plant Pathology Journal, 39(3), 265–274. https://doi.org/10.5423/PPJ.OA.02.2023.0035
  • Entsar, E. (2016). Nematicidal effects of silver nanoparticles on root-knot nematodes (Meloidogyne incognita) in laboratory and screenhouse. Journal of Plant Protection and Pathology, 7(5), 333–337. https://doi.org/10.21608/jppp.2016.50566
  • Ghareeb, R. Y., Alfy, H., Fahmy, A. A., Ali, H. M., & Abdelsalam, N. R. (2020). Utilization of Cladophora glomerata extract nanoparticles as eco-nematicide and enhancing the defense responses of tomato plants infected by Meloidogyne javanica. Scientific Reports, 10(1), 19968. https://doi.org/10.1038/s41598-020-77005-1
  • Gonullu, M. P., Cakil, D. D., & Cetinkaya, C. (2024). Influence of thermal treatment and Fe doping on ZnO films by ultrasonic spray pyrolysis. Thin Solid Films, 793, 140265. https://doi.org/10.1016/j.tsf.2024.140265
  • González-Moragas, L., Maurer, L. L., Harms, V. M., Meyer, J. N., Laromaine, A., & Roig, A. (2017). Materials and toxicological approaches to study metal and metal-oxide nanoparticles in the model organism Caenorhabditis elegans. Materials Horizons, 4(5), 719–746. https://doi.org/10.1039/C7MH00166E
  • Hashem, A. H., Selim, T. A., Alruhaili, M. H., Selim, S., Alkhalifah, D. H. M., Al Jaouni, S. K., & Salem, S. S. (2022). Unveiling antimicrobial and insecticidal activities of biosynthesized selenium nanoparticles using prickly pear peel waste. Journal of Functional Biomaterials, 13(3), 112. https://doi.org/10.3390/jfb13030112
  • Hasnidawani, J. N., Azlina, H. N., Norita, H., Bonnia, N. N., Ratim, S., & Ali, E. S. (2016). Synthesis of ZnO nanostructures using sol-gel method. Procedia Chemistry, 19, 211–216. https://doi.org/10.1016/j.proche.2016.03.095
  • Jameel, M., Shoeb, M., Khan, M. T., Ullah, R., Mobin, M., Farooqi, M. K., & Adnan, S. M. (2020). Enhanced insecticidal activity of thiamethoxam by zinc oxide nanoparticles: A novel nanotechnology approach for pest control. ACS Omega, 5(3), 1607–1615. https://doi.org/10.1021/acsomega.9b03680
  • Jatala, P. (2019). Biology and management of plant-parasitic nematodes on sweet potato. In Sweet Potato Pest Management (pp. 359–378). CRC Press. https://doi.org/10.1201/9780429308109-19
  • Jiang, Z., Liu, B., Yu, L., Tong, Y., Yan, M., Zhang, R., Han, W., Hao, Y., Shangguan, L., Zhang, S., & Li, W. (2023). Research progresses in preparation methods and applications of zinc oxide nanoparticles. Journal of Alloys and Compounds, 956, 170316. https://doi.org/10.1016/j.jallcom.2023.170316
  • Jones, J. T., Haegeman, A., Danchin, E. G. J., Gaur, H. S., Helder, J., Jones, M. G. K., Kikuchi, T., Manzanilla-López, R., Palomares-Rius, J. E., Wesemael, W. M. L., & Perry, R. N. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14(9), 946–961. https://doi.org/10.1111/mpp.12057
  • Jung, Y., Kim, J., Kim, N. H., & Kim, H. G. (2023). Ag–ZnO nanocomposites as a 3D metal-enhanced fluorescence substrate for the fluorescence detection of DNA. ACS Applied Nano Materials, 6(2), 976–985. https://doi.org/10.1021/acsanm.2c04352
  • Kalaba, M. H., Moghannem, S. A., El-Hawary, A. S., Radwan, A. A., Sharaf, M. H., & Shaban, A. S. (2021). Green synthesized ZnO nanoparticles mediated by Streptomyces ­plicatus: Characterizations, antimicrobial and nematicidal activities and cytogenetic effects. Plants, 10(9), 1760. https://doi.org/10.3390/plants10091760
  • Kalia, A., Kaur, J., Tondey, M., Manchanda, P., Bindra, P., Alghuthaymi, M. A., Shami, A., & Abd-Elsalam, K. A. (2021). Differential antimycotic and antioxidant potentials of chemically synthesized zinc-based nanoparticles derived from different reducing/complexing agents against pathogenic fungi of maize crop. Journal of Fungi, 7(3), 223. https://doi.org/10.3390/jof7030223
  • Karssen, G., Wesemael, W., & Moens, M. (2013). Root-knot nematodes. In Plant nematology (pp. 73–108). Cabi. https://doi.org/10.1079/9781780641515.0073
  • Kathirvelu, S., D’souza, L., & Dhurai, B. (2009). UV protection finishing of textiles using ZnO nanoparticles. Indian Journal of Fibre & Textile Research, 34, 267–273.
  • Khan, Y. A., Singh, B. R., Ullah, R., Shoeb, M., Naqvi, A. H., & Abidi, S. M. A. (2015). Anthelmintic effect of biocompatible Zinc Oxide Nanoparticles (ZnO NPs) on Gigantocotyle explanatum, a Neglected Parasite of Indian Water Buffalo. PLoS One, 10(7), e0133086. https://doi.org/10.1371/journal.pone.0133086
  • Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011
  • Khan, M. F., Ansari, A. H., Hameedullah, M., Ahmad, E., Husain, F. M., Zia, Q., Baig, U., Zaheer, M. R., Alam, M. M., Khan, A. M., AlOthman, Z. A., Ahmad, I., Ashraf, G. M., & Aliev, G. (2016). Sol-Gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics. Scientific Reports, 6(1), 27689. https://doi.org/10.1038/srep27689
  • Khan, M. F., Husain, F. M., Zia, Q., Ahmad, E., Jamal, A., Alaidarous, M., Banawas, S., Alam, M. M., Alshehri, B. A., Jameel, M., Alam, P., Ahamed, M. I., Ansari, A. H., & Ahmad, I. (2020). Anti-quorum sensing and anti-biofilm activity of zinc oxide nanospikes. ACS Omega, 5(50), 32203–32215. https://doi.org/10.1021/acsomega.0c03634
  • Khan, M. F., Hameedullah, M., Ansari, A. H., Ahmad, E., Lohani, M. B., Khan, R. H., Alam, M. M., Khan, W., Husain, F. M., & Ahmad, I. (2014). Flower-shaped ZnO nanoparticles synthesized by a novel approach at near-room temperatures with antibacterial and antifungal properties. International Journal of Nanomedicine, 9, 853–864. https://doi.org/10.2147/IJN.S47351
  • Kim, S., & Ryu, D. Y. (2013). Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. Journal of Applied Toxicology, 33(2), 78–89. https://doi.org/10.1002/jat.2792
  • Lawrence, G. W., Clark, C. A., & Wright, V. L. (1986). Influence of Meloidogyne incognita on resistant and susceptible sweet potato cultivars. Journal of Nematology, 18(1), 59–65.
  • Lodha, A. S., Pandya, A., & Shukla, R. K. (2016). Nanotechnology: An applied and robust approach for forensic investigation. Foresic Research & Criminology International Journal, 2(1), 00044. https://doi.org/10.15406/frcij.2016.02.00044
  • Madhuri, S., Choudhary, A. K., & Rohit, K. (2010). Nanotechnology in agricultural diseases and food safety. Journal of Phytology, 2(4), 78–82.
  • Mandal, A. K., Katuwal, S., Tettey, F., Gupta, A., Bhattarai, S., Jaisi, S., Bhandari, D. P., Shah, A. K., Bhattarai, N., & Parajuli, N. (2022). Current research on zinc oxide nanoparticles: Synthesis, characterization, and biomedical applications. Nanomaterials, 12(17), 3066. https://doi.org/10.3390/nano12173066
  • Martins, N. C. T., Avellan, A., Rodrigues, S., Salvador, D., Rodrigues, S. M., & Trindade, T. (2020). Composites of biopolymers and ZnO NPs for controlled release of zinc in agricultural soils and timed delivery for maize. ACS Applied Nano Materials, 3(3), 2134–2148. https://doi.org/10.1021/acsanm.9b01492
  • Mohd Adnan, M. A., Julkapli, N. M., & Abd Hamid, S. B. (2016). Review on ZnO hybrid photocatalyst: Impact on photocatalytic activities of water pollutant degradation. Reviews in Inorganic Chemistry, 36(2), 77–104. https://doi.org/10.1515/revic-2015-0015
  • Mora-Fonz, D., Lazauskas, T., Farrow, M. R., Catlow, C. R. A., Woodley, S. M., & Sokol, A. A. (2017). Why are polar surfaces of ZnO stable? Chemistry of Materials, 29(12), 5306–5320. https://doi.org/10.1021/acs.chemmater.7b01487
  • Morkoç, H., & Özgür, Ü. (2008). Zinc oxide: Fundamentals, materials and device technology. John Wiley & Sons. https://doi.org/10.1002/9783527623945
  • Mosquera-Sánchez, L. P., Arciniegas-Grijalba, P. A., Patiño-Portela, M. C., Guerra–Sierra, B. E., Muñoz-Florez, J. E., & Rodríguez-Páez, J. E. (2020). Antifungal effect of zinc oxide nanoparticles (ZnO-NPs) on Colletotrichum sp., causal agent of anthracnose in coffee crops. Biocatalysis and Agricultural Biotechnology, 25, 101579. https://doi.org/10.1016/j.bcab.2020.101579
  • Mukhopadhyay, S. S. (2014). Nanotechnology in agriculture: Prospects and constraints. Nanotechnology, Science and Applications, 7, 63–71. https://doi.org/10.2147/NSA.S39409
  • Nazir, R. (Ed.). (2018). Nanotechnology applications in environmental engineering. IGI Global. https://doi.org/10.4018/978-1-5225-5745-6
  • Overstreet, C. (2009). Nematodes. In G. Loebenstein & G. Ottappilly (Eds.), De Sweet Potato (pp. 135–159). Springer. https://doi.org/10.1007/978-1-4020-9475-0_9
  • Pandya, A., & Shukla, R. K. (2018). New perspective of nanotechnology: Role in preventive forensic. Egyptian Journal of Forensic Sciences, 8(1), 57. https://doi.org/10.1186/s41935-018-0088-0
  • Panse, V. G., & Sukhatme, P. V. (1954). Statistical methods for agricultural workers. Statistical methods for agricultural workers.
  • Roh, J. Y., Eom, H. J., & Choi, J. (2012). Involvement of Caenohabditis elegans MAPK signaling pathways in oxidative stress response induced by silver nanoparticles exposure. Toxicological Research, 28(1), 19–24. https://doi.org/10.5487/TR.2012.28.1.019
  • Sakuma, M. (1998). Probit analysis of preference data. Applied Entomology and Zoology, 33(3), 339–347. https://doi.org/10.1303/aez.33.339
  • Saloga, P. E., Rybak, T., & Thünemann, A. F. (2022). Microwave-assisted synthesis of ZnO nanoparticles: Phase transfer to water. Advanced Engineering Materials, 24(6), 2101276. https://doi.org/10.1002/adem.202101276
  • Sávoly, Z., Hrács, K., Pemmer, B., Streli, C., Záray, G., & Nagy, P. I. (2016). Uptake and toxicity of nano-ZnO in the plant-feeding nematode, Xiphinema vuittenezi: the role of dissolved zinc and nanoparticle-specific effects. Environmental Science and Pollution Research International, 23(10), 9669–9678. https://doi.org/10.1007/s11356-015-5983-4
  • Singh, R., Choudhary, P., Kumar, S., & Daima, H. K. (2024). Mechanistic approaches for crosstalk between nanomaterials and plants: Plant immunomodulation, defense mechanisms, stress resilience, toxicity, and perspectives. Environmental Science, 2024, 53. https://doi.org/10.1039/D4EN00053F
  • Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Hasan, H., & Mohamad, D. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7(3), 219–242. https://doi.org/10.1007/s40820-015-0040-x
  • Soren, S., Kumar, S., Mishra, S., Jena, P. K., Verma, S. K., & Parhi, P. (2018). Evaluation of antibacterial and antioxidant potential of the zinc oxide nanoparticles synthesized by aqueous and polyol method. Microbial Pathogenesis, 119, 145–151. https://doi.org/10.1016/j.micpath.2018.03.048
  • Subbotin, S. A., Palomares-Rius, J. E., & Castillo, P. (2021). Taxonomic history. In D. J. Hunt & R. N. Perry (Eds.), Systematics of root-knot nematodes (Nematoda: meloidogynidae) (Nematology monographs and Perspectives 14 (pp. 1–15). Brill. https://doi.org/10.1163/9789004387584_002
  • Titus, D., Samuel, E. J. J., & Roopan, S. M. (2019). Nanoparticle characterization techniques. In Green ­synthesis, characterization and applications of nanoparticles (pp. 303–319). Elsevier. https://doi.org/10.1016/B978-0-08-102579-6.00012-5
  • Tryfon, P., Kamou, N. N., Ntalli, N., Mourdikoudis, S., Karamanoli, K., Karfaridis, D., Menkissoglu-Spiroudi, U., & Dendrinou-Samara, C. (2022). Coated Cu-doped ZnO and Cu nanoparticles as control agents against plant pathogenic fungi and nematodes. NanoImpact, 28, 100430. https://doi.org/10.1016/j.impact.2022.100430
  • Wang, P., Menzies, N. W., Lombi, E., McKenna, B. A., Johannessen, B., Glover, C. J., Kappen, P., & Kopittke, P. M. (2013). Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Environmental Science & Technology, 47(23), 13822–13830. https://doi.org/10.1021/es403466p
  • Wang, X., Deng, L. L., Wang, L. Y., Dai, S. M., Xing, Z., Zhan, X. X., Lu, X. Z., Xie, S. Y., Huang, R. B., & Zheng, L. S. (2017). Cerium oxide standing out as an electron transport layer for efficient and stable perovskite solar cells processed at low temperature. Journal of Materials Chemistry A, 5(4), 1706–1712. https://doi.org/10.1039/C6TA07541J
  • Wang, Z., Wang, S., Ma, T., Liang, Y., Huo, Z., & Yang, F. (2023). Synthesis of zinc oxide nanoparticles and their applications in enhancing plant stress resistance: A ­review. Agronomy, 13(12), 3060. https://doi.org/10.3390/agronomy13123060
  • Wirunchit, S., Wonganan, N., & Koetniyom, W. (2023). Multi self-cleaning properties of zinc oxide nanoparticles/polydimethylsiloxane (ZnO/PDMS) composite on polyester textile. Current Applied Science and Technology, 23(5), 10–55003. https://doi.org/10.55003/cast.2023.05.23.015
  • Wojnarowicz, J., Chudoba, T., & Lojkowski, W. (2020). A review of microwave synthesis of zinc oxide nanomaterials: Reactants, process parameters and morphologies. Nanomaterials, 10(6), 1086. https://doi.org/10.3390/nano10061086
  • Xie, J., Li, P., Li, Y., Wang, Y., & Wei, Y. (2009). Morphology control of ZnO particles via aqueous solution route at low temperature. Materials Chemistry and Physics, 114(2-3), 943–947. https://doi.org/10.1016/j.matchemphys.2008.11.007
  • Yazhiniprabha, M., Vaseeharan, B., Sonawane, A., & Behera, A. (2019). In vitro and in vivo toxicity assessment of phytofabricated ZnO nanoparticles showing bacteriostatic effect and larvicidal efficacy against Culex quinquefasciatus. Journal of Photochemistry and Photobiology. B, Biology, 192, 158–169. https://doi.org/10.1016/j.jphotobiol.2019.01.014
  • Yu, Z., Li, Q., Wang, J., Yu, Y., Wang, Y., Zhou, Q., & Li, P. (2020). Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Research Letters, 15(1), 115. https://doi.org/10.1186/s11671-020-03344-7
  • Zhao, L., Lu, L., Wang, A., Zhang, H., Huang, M., Wu, H., Xing, B., Wang, Z., & Ji, R. (2020). Nano-biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance. Journal of Agricultural and Food Chemistry, 68(7), 1935–1947. https://doi.org/10.1021/acs.jafc.9b06615