275
Views
0
CrossRef citations to date
0
Altmetric
Food Science & Technology

Effects of machine-crop parameters on mechanical grain damage in rice threshing

ORCID Icon, , , , &
Article: 2367381 | Received 20 Oct 2023, Accepted 09 Jun 2024, Published online: 21 Jun 2024

References

  • AfricaRice. NERICA. Retrieved 27 September 2023, from https://www.africarice.org/nerica.
  • Srivastava, A. K., Goering, C. E., Rohrbach, R. P., & Buckmaster, D. R. (2013). Engineering principles of agricultural machines (2nd ed.). American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/epam.2013
  • Alizadeh, M. R., & Khodabakhshipour, M. (2010). Effect of threshing drum speed and crop moisture content on the paddy grain damage in axial-flow thresher. Cercetări Agronomice în Moldova, 43(144), 1–14. https://repository.uaiasi.ro/xmlui/handle/20.500.12811/2571
  • Andrews, S. B., Siebenmorgen, T. J., Vories, E. D., Loewer, D. H., & Mauromoustakos, A. (1993). Effects of combine operating parameters on harvest loss and quality in rice. Transactions of the ASAE, 36(6), 1599–1607. https://doi.org/10.13031/2013.28501
  • Ardeh, E. A. A., & Gilandeh, Y. A. (2008). Investigation of the effective factors on threshing loss, damaged grains percent and material other than grain to grain ratio on an auto head feed threshing unit. American Journal of Agricultural and Biological Sciences, 3(4), 699–705. https://doi.org/10.3844/ajabssp.2008.699.705
  • Arouna, A., Fatognon, I. A., Saito, K., & Futakuchi, K. (2021). Moving toward rice self-sufficiency in sub-Saharan Africa by 2030: Lessons learned from 10 years of the Coalition for African Rice Development. World Development Perspectives, 21, 100291. https://doi.org/10.1016/j.wdp.2021.100291
  • Bautista, R. C., Siebenmorgen, T. J. and Mauromoustakos, A. (2009). The role of rice individual Kernel moisture content distributions at harvest on milling quality. Transactions of the ASABE, 52(5), 1611–1620. https://doi.org/10.13031/2013.29112
  • Bhardwaj, M., Dogra, R., Javed, M., Singh, M., & Dogra, B. (2021). Optimization of conventional combine harvester to reduce combine losses for basmati rice (Oryza Sativa). Agricultural Sciences, 12(03), 259–272. https://doi.org/10.4236/as.2021.123017
  • Dong, R., Lu, Z., Liu, Z., Koide, S., & Cao, W. (2010). Effect of drying and tempering on rice fissuring analysed by integrating intra-kernel moisture distribution. Journal of Food Engineering, 97(2), 161–167. https://doi.org/10.1016/j.jfoodeng.2009.10.005
  • Esgici, R., Pekitkan, F. G., & Sessiz, A. (2020). Evaluation of cylinder rotational speed for rice grain losses and broken grain ratio. Journal of Agricultural Machinery Science, 16(2), 28–33. http://dergipark.org.tr/tr/pub/tarmak.
  • Fan, J., Siebenmorgen, T. J. and Yang, W. (2000). A study of head rice yield reduction of long- and medium-grain rice varieties in relation to various harvest and drying conditions. Transactions of the ASAE, 43(6), 1709–1714. https://doi.org/10.13031/2013.3072
  • FAO. Production: Crop and livestock products. Retrieved 26 September 2023, from https://www.fao.org/faostat/en/#data/QCL.
  • Ghoname, M. S., Soltan, M. A., Bahnas, O. T., & Fouda, T. Z. (2023). Modification of a combine harvester rice threshing device. Agricultural Engineering International: CIGR Journal, 25(2), 101–109. https://cigrjournal.org/index.php/Ejounral/article/view/8501
  • Gummet, M., Kutzbach, H. D., Mühlbauer, W., Wacker, P., & Quick, G. R. (1992). Performance evaluation of An IRRI axial-flow paddy thresher. Agricultural Mechanization in Asia, Africa and Latin America (AMA), 23(3), 47–54.
  • Kshirod, R. B. (2011). Rice Quality: A guide to rice properties and analysis. Woodhead Publishing Limited. www.woodheadpublishing.com.
  • Liquan, T., Zhengzhong, Z., Yongsen, X., Meiqiao, L., & Rendiao, J. (2020). Development and experiment on 4LZ-4. 0 type double speed and double action rice combine harvester. International Journal of Frontiers in Engineering Technology, 2(3), 1–15. https://doi.org/10.25236/IJFET.2020.020301
  • Nahemiah, D., Nkama, I., Yahaya, I. P., Badau, M. H., & Umar, A. (2021). Advances in rice postharvest loss reduction strategies in Africa through low grade broken rice fractions and husk value addition. Recent advances in rice research (pp. 207–226). IntechOpen. https://doi.org/10.5772/intechopen.94273
  • Naik, R. K., Patel, S., Verma, A. K., & Shrivastava, A. K. (2010). Effect of crop and machine parameters on performance of paddy thresher. Agricultural Engineering Today, 34(1), 30–32. indianjournals.com/ijor.aspx?target=ijor:aet&volume=34&issue=1&article=005
  • Rana Shahzad Noor, F. H., Khan, H. F., Shah, A. A., & Shah, A. N. (2023). Effect of crop maturity condition and operating factors on the threshing performance of wheat thresher. Journal of Pure and Applied Agriculture, 8(2), 21–36. Retrieved from https://ojs.aiou.edu.pk/index.php/jpaa/article/view/1464
  • Olaye, A. R. I. B., Moreira, J., Hounhouigan, J., & Amponsah, S. K. (2016). Effect of threshing drum speed and crop weight on paddy grain quality in axial-flow thresher (ASI). Journal of Multidisciplinary Engineering Science and Technology, 3, 3716–3721.
  • Osueke, E. C. O. (2013). Study of the influence of crop, machine & operating parameters on performance of cereal threshers. International Journal of Engineering Research and Development, 7(9), 1–9. Retrieved from International Journal of Engineering Research and Development (IJERD).
  • Parihar, D. S., Shrivastava, A. K., Singh, A. K., Singh, N. K., Mahadik, A. S., & Awasthi, V. J. (2022). Optimization of operational parameters for axial flow paddy thresher using RSM. International Journal of Environment and Climate Change, 12(9), 253–263. https://doi.org/10.9734/ijecc/2022/v12i930762
  • Riaz, M., Ismail, T., & Akhtar, S. (2017). Harvesting, threshing, processing, and products of rice. Rice production worldwide. Springer. https://doi.org/10.1007/978-3-319-47516-5_16.
  • Seck, P. A., Diagne, A., Mohanty, S., & Wopereis, M. C. S. (2012). Crops that feed the world 7: Rice. Food Security, 4(1), 7–24. https://doi.org/10.1007/s12571-012-0168-1
  • Sessİz, A., Esgici, R., Güzel, E., & Özcan, M. (2011, September 21-24). Performance evaluation of axial-flow and tangential flow threshing units for rice [conference presentation]. 11th International Congress on Mechanization and Energy in Agriculture, Istanbul, Terkey.
  • Sharma, A. D., Kunze, O. R., & Sarker, N. N. (1992). Impact damage on rough rice. Transactions of the ASAE, 35(6), 1929–1934. https://doi.org/10.13031/2013.28817
  • Siebenmorgen, T. J., Counce, P. A., Lu, R., & Kocher, M. F. (1992). Correlation of head rice yield with individual kernel moisture content distribution at harvest. Transactions of the ASAE, 35(6), 1879–1884. https://doi.org/10.13031/2013.28810
  • Singh, P. D., Shrivastava, A. K., & Vishnu, A. (2023). Effect of machine and crop parameters on paddy (Oryza sativa) threshing using axial flow thresher. Journal of Agricultural Engineering, 59(3), 229–239. https://doi.org/10.52151/jae2022593.1778
  • Sreenivasulu, V. M. B. N.Jr., (2019). Improving head rice yield and milling quality: State-of- the-art and future prospects. In N. Sreenivasulu (Ed.), Rice grain quality: Methods and protocols, methods in molecular biology (pp. 1–18). Springer. https://doi.org/10.1007/978-1-4939-8914-0
  • Suleiman, J., Dangora, N. D., & Attanda, M. L. (2019). Development of a regression model for predicting rice grain breakages for Deutz-Fahr M1202 combine harvester. Bayero Journal of Engineering and Technology, 14(1), 47–53.