339
Views
0
CrossRef citations to date
0
Altmetric
Entomology

Non-crop plant beds can improve arthropod diversity including beneficial insects in chemical-free oil palm agroecosystems

ORCID Icon, , , , , , & show all
Article: 2367383 | Received 24 Oct 2023, Accepted 09 Jun 2024, Published online: 24 Jun 2024

References

  • Albrecht, M., Kleijn, D., Williams, N. M., Tschumi, M., Blaauw, B. R., Bommarco, R., Campbell, A. J., Dainese, M., Drummond, F. A., Entling, M. H., Ganser, D., Arjen de Groot, G., Goulson, D., Grab, H., Hamilton, H., Herzog, F., Isaacs, R., Jacot, K., Jeanneret, P., … Sutter, L. (2020). The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecology Letters, 23(10), 1–11. https://doi.org/10.1111/ele.13576
  • Alyokhin, A., & Chen, Y. H. (2017). Adaptation to toxic hosts as a factor in the evolution of insecticide resistance. Current Opinion in Insect Science, 21, 33–38. https://doi.org/10.1016/j.cois.2017.04.006
  • Aratrakorn, S., Thunhikorn, S., & Donald, P. F. (2006). Changes in bird communities following conversion of lowland forest to oil palm and rubber plantations in southern Thailand. Bird Conservation International, 16(01), 71–82. https://doi.org/10.1017/S0959270906000062
  • Ashraf, M., Sanusi, R., Zulkifli, R., Tohiran, K. A., Moslim, R., Ashton-Butt, A., & Azhar, B. (2019). Alley-cropping system increases vegetation heterogeneity and moderates extreme microclimates in oil palm plantations. Agricultural and Forest Meteorology, 276–277, 107632. https://doi.org/10.1016/j.agrformet.2019.107632
  • Ashraf, M., Zulkifli, R., Sanusi, R., Tohiran, K. A., Terhem, R., Moslim, R., Norhisham, A. R., Ashton-Butt, A., & Azhar, B. (2018). Alley-cropping system can boost arthropod biodiversity and ecosystem functions in oil palm plantations. Agriculture, Ecosystems and Environment, 260, 19–26. https://doi.org/10.1016/j.agee.2018.03.017
  • Ashton-Butt, Adham, Aryawan, Anak A. K., Hood, Amelia S. C., Naim, Mohammad, Purnomo, Dedi, Wahyuningsih, Resti, Willcock, Simon, Poppy, Guy M., Caliman, Jean-Pierre, Turner, Edgar C., Foster, William A., Peh, Kelvin S.-H., Snaddon, Jake L., Suhardi, S. (2018). Understory vegetation in oil palm plantations benefits soil biodiversity and decomposition rates. Frontiers in Forests and Global Change 1, 10. https://doi.org/10.3389/ffgc.2018.00010
  • Atakan, E., & Pehlivan, S. (2015). Attractiveness of various colored sticky traps to some pollinating insects in apple. Turkish Journal of Zoology, 39(3), 474–481. https://doi.org/10.3906/zoo-1403-62
  • Azhar, B., Saadun, N., Puan, C. L., Kamarudin, N., Aziz, N., Nurhidayu, S., & Fischer, J. (2015). Promoting landscape heterogeneity to improve the biodiversity benefits of certified palm oil production: Evidence from Peninsular Malaysia. Global Ecology and Conservation, 3, 553–561. https://doi.org/10.1016/j.gecco.2015.02.009
  • Begum, M., Gurr, G. M., Wratten, S. D., & Nicol, H. I. (2004). Flower color affects tri-trophic-level biocontrol interactions. Biological Control, 30(3), 584–590. https://doi.org/10.1016/j.biocontrol.2004.03.005
  • Calvert, F., Hollingsworth, R. G., Wall, M., & Follett, P. A. (2019). Survey of flowering plants in Hawaii as potential banker plants of anthocorid predators for thrips control. Journal of Asia-Pacific Entomology, 22(3), 638–644. https://doi.org/10.1016/j.aspen.2019.05.001
  • Campbell, A. J., Biesmeijer, J. C., Varma, V., & Wäckers, F. L. (2012). Realising multiple ecosystem services based on the response of three beneficial insect groups to floral traits and trait diversity. Basic and Applied Ecology, 13(4), 363–370. https://doi.org/10.1016/j.baae.2012.04.003
  • Campbell, J. W., & Hanula, J. L. (2007). Efficiency of Malaise traps and colored pan traps for collecting flower visiting insects from three forested ecosystems. Journal of Insect Conservation, 11(4), 399–408. https://doi.org/10.1007/s1084-006-9055-4
  • Campbell, A. J., Wilby, A., Sutton, P., & Wäckers, F. (2017). Getting more power from your flowers: Multi-functional flower strips enhance pollinators and pest control agents in apple orchards. Insects, 8(3), 101. https://doi.org/10.3390/insects8030101
  • Carvalheiro, L. G., Seymour, C. L., Nicolson, S. W., & Veldtman, R. (2012). Creating patches of native flowers facilitates crop pollination in large agricultural fields: Mango as a case study. Journal of Applied Ecology, 49(6), 1373–1383. https://doi.org/10.1111/j.1365-664.2012.02217.x
  • Caudwell, R. W. (2000). The successful development and implementation of an integrated pest management system for oil palm in Papua New Guinea. Integrated Pest Management Reviews, 5(4), 297–301. https://doi.org/10.1023/A:1012915132646
  • Chen, L. L., Yuan, P., You, M. S., Pozsgai, G., Ma, X., Zhu, H., & Yang, G. (2019). Cover crops enhance natural enemies while help suppressing pests in a tea plantation. Annals of the Entomological Society of America, 112(4), 348–355. https://doi.org/10.1093/aesa/say050
  • Chung, G. F. (2012). Effect of pests and diseases on oil palm yield. In Palm oil (pp. 163–210). AOCS Press.
  • Denan, N., Norhisham, A. R., Sanusi, R., Stone, J., & Azhar, B. (2023). Stand-level habitat characteristics and edge habitats drive biological pest control services in the understory of oil palm plantations. Biological Control, 183, 105261. https://doi.org/10.1016/j.biocontrol.2023.105261
  • Dhananjayan, V., Jayakumar, S., & Ravichandran, B. (2020). Conventional methods of pesticide application in agricultural field and fate of the pesticides in the environment and human health. Controlled Release of Pesticides for Sustainable Agriculture. 1–39.
  • Dötterl, S., & Vereecken, N. J. (2010). The chemical ecology and evolution of bee-flower interactions: A review and perspectives. Canadian Journal of Zoology, 88(7), 668–697. https://doi.org/10.1139/Z10-031
  • Fauzana, H., Sutikno, A., & Salbiah, D. (2019). Population fluctuations Oryctes rhinoceros L. beetle in plant oil palm (Elaeis guineensis Jacq.) given mulching oil palm empty bunch. CROPSAVER - Journal of Plant Protection, 1(1), 42–47. https://doi.org/10.24198/cs.v1i1.16998
  • Géneau, C. E., Wäckers, F. L., Luka, H., Daniel, C., & Balmer, O. (2012). Selective flowers to enhance biological control of cabbage pests by parasitoids. Basic and Applied Ecology, 13(1), 85–93. https://doi.org/10.1016/j.baae.2011.10.005
  • Gonzálvez, F. G., Santamaría, L., Corlett, R. T., & Rodríguez Gironés, M. A. (2013). Flowers attract weaver ants that deter less effective pollinators. Journal of Ecology, 101(1), 78–85. https://doi.org/10.1111/1365-2745.12006
  • Hermoso, V., Carvalho, S. B., Giakoumi, S., Goldsborough, D., Katsanevakis, S., Leontiou, S., Markantonatou, V., Rumes, B., Vogiatzakis, I. N., & Yates, K. L. (2022). The EU Biodiversity Strategy for 2030: Opportunities and challenges on the path towards biodiversity recovery. Environmental Science & Policy, 127(June 2021), 263–271. https://doi.org/10.1016/j.envsci.2021.10.028
  • Houndété, T. A., Kétoh, G. K., Hema, O. S., Brévault, T., Glitho, I. A., & Martin, T. (2010). Insecticide resistance in field populations of Bemisia tabaci (Hemiptera: Aleyrodidae) in West Africa. Pest Management Science, 66(11), 1181–1185. https://doi.org/10.1002/ps.2008
  • Huang, J. C. C., Hsieh, Y. C., Lu, S. S., Yeh, W. C., Liang, J. Y., Lin, C. J., & Tung, G. S. (2021). Flower-visiting insects of genus Melastoma (Myrtales: Melastomataceae) at the Fushan Botanical Garden, Taiwan. Biodiversity Data Journal, 9, e60315. https://doi.org/10.3897/BDJ.9.e60315
  • Hussain, R. I., Walcher, R., Vogel, N., Krautzer, B., Rasran, L., & Frank, T. (2023). Effectiveness of flowers strips on insect’s restoration in intensive grassland. Agriculture, Ecosystems and Environment, 348(October 2022), 108436. https://doi.org/10.1016/j.agee.2023.108436
  • Jamian, S., Norhisham, A., Ghazali, A., Zakaria, A., & Azhar, B. (2017). Impacts of 2 species of predatory Reduviidae on bagworms in oil palm plantations. Insect Science, 24(2), 285–294. https://doi.org/10.1111/1744-7917.12309
  • Karamaouna, F., Kati, V., Volakakis, N., Varikou, K., Garantonakis, N., Economou, L., Birouraki, A., Markellou, E., Liberopoulou, S., & Edwards, M. (2019). Ground cover management with mixtures of flowering plants to enhance insect pollinators and natural enemies of pests in olive groves. Agriculture, Ecosystems and Environment, 274(June 2018), 76–89. https://doi.org/10.1016/j.agee.2019.01.004
  • Kato, M., Kosaka, Y., Kawakita, A., Okuyama, Y., Kobayashi, C., Phimminith, T., & Thongphan, D. (2008). Plant-pollinator interactions in tropical monsoon forests in Southeast Asia. American Journal of Botany, 95(11), 1375–1394. https://doi.org/10.3732/ajb.0800114
  • Kleijn, D., Rundlöf, M., Scheper, J., Smith, H. G., & Tscharntke, T. (2011). Does conservation on farmland contribute to halting the biodiversity decline? Trends in Ecology & Evolution, 26(9), 474–481. https://doi.org/10.1016/j.tree.2011.05.009
  • Kovács-Hostyánszki, A., Espíndola, A., Vanbergen, A. J., Settele, J., Kremen, C., & Dicks, L. V. (2017). Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecology Letters, 20(5), 673–689. https://doi.org/10.1111/ele.12762
  • Leong, J. M., & Thorp, R. W. (1999). Colour-coded sampling: the pan trap colour preferences of oligolectic and nonoligolectic bees associated with a vernal pool plant. Ecological Entomology, 24(3), 329–335. https://doi.org/10.1046/j.1365-2311.1999.00196.x
  • Luke, Sarah H., Purnomo, Dedi, Advento, Andreas Dwi, Aryawan, Anak Agung Ketut, Naim, Mohammad, Pikstein, Rachel N., Ps, Sudharto, Rambe, T. Dzulfikar S., Caliman, Jean-Pierre, Snaddon, Jake L., Foster, William A., Turner, Edgar C., Soeprapto. (2019). Effects of understory vegetation management on plant communities in oil palm plantations in Sumatra, Indonesia. Frontiers in Forests and Global Change 2, 33. https://doi.org/10.3389/ffgc.2019.00033
  • Martin, T., Ochou, G. O., Hala-N’Klo, F., Vassal, J.-M., & Vaissayre, M. (2000). Pyrethroid resistance in the cotton bollworm, Helicoverpa armigera (Hübner), in West Africa. Pest Management Science, 56(6), 549–554. https://doi.org/10.1002/(SICI)1526-4998(200006)56:6<549::AID-PS160>3.0.CO;2-Y
  • Mathew, G., & Anto, M. (2007). In situ conservation of butterflies through establishment of butterfly gardens: A case study at Peechi, Kerala, India. Current Science, 93(3), 337–347.
  • Middleton, E. G., Macrae, I. V., & Philips, C. R. (2021). Floral plantings in large-scale commercial agroecosystems support both pollinators and arthropod predators. Insects, 12(2), 91. https://doi.org/10.3390/insects12020091
  • Moreira, E. F., Santos, R. L. D. S., Penna, U. L., Angel-Coca, C., de Oliveira, F. F., & Viana, B. F. (2016). Are pan traps colors complementary to sample community of potential pollinator insects? Journal of Insect Conservation, 20(4), 583–596. https://doi.org/10.1007/s10841-016-9890-x
  • Mulyana, A. N., Priyambodo, S., Triwidodo, H., Hendarjanti, H., & Sahari, B. (2020). An assessment of the reproduction, predation, and nesting behavior of Sulawesi Masked-owl (Tyto rosenbergii) in oil palm plantation: A case study of West and Central Sulawesi, Indonesia. Biodiversitas Journal of Biological Diversity, 21(12) https://doi.org/10.13057/biodiv/d211226
  • Murgianto, F., Putra, S. K., & Ardiyanto, A. (2022 Role of The Barn Owl Tyto alba javanica as a Biological Agent for Rat Pest Control in The Oil Palm Plantation of Bumitama Agri Ltd [Paper presentation]. In IOP Conference Series: Earth and Environmental Science (Vol. 985, No. 1, p. 012048). IOP Publishing. https://doi.org/10.1088/1755-1315/985/1/012048
  • Nobilly, F., Atikah, S. N., Yahya, M. S., Jusoh, S., Cun, G. S., Norhisham, A. R., … Azhar, B. (2022). Rotational cattle grazing improves understory vegetation biodiversity and structural complexity in oil palm plantations (Vol. 22, No. 1, pp. 13–26). John Wiley & Sons Australia, Ltd. https://doi.org/10.1111/wbm.12246
  • Nobilly, F., Atikah, S. N., Yahya, M. S., Jusoh, S., Maxwell, T. M. R., Norhisham, A. R., Tohiran, K. A., Zulkifli, R., & Azhar, B. (2023). Do silvopastoral management practices affect biological pest control in oil palm plantations? BioControl, 68(4), 411–424. https://doi.org/10.1007/s10526-023-10196-4
  • Palmer, W. A., & Pullen, K. R. (2001). The phytophagous arthropods associated with Senna obtusifolia (Caesalpiniaceae) in Mexico and Honduras and their prospects for utilization for biological control. Biological Control, 20(1), 76–83. https://doi.org/10.1006/bcon.2000.0879
  • Peñalver-Cruz, A., Alvarez, D. & Lavandero, B. (2020). Do hedgerows influence the natural biological control of woolly apple aphids in orchards?. Journal of Pest Science, 93, 219–234. https://doi.org/10.1007/s10340-019-01153-1
  • Pokharel, S. S., Yu, H., Fang, W., Parajulee, M. N., & Chen, F. (2023). Intercropping cover crops for a vital ecosystem service: A review of the biocontrol of insect pests in tea agroecosystems. Plants (Basel, Switzerland), 12(12), 2361. https://doi.org/10.3390/plants12122361
  • Power, A. G. (2010). Ecosystem services and agriculture: Tradeoffs and synergies. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365(1554), 2959–2971. https://doi.org/10.1098/rstb.2010.0143
  • Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A. S., Srivastav, A. L., & Kaushal, J. (2021). An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production, 283, 124657. https://doi.org/10.1016/j.jclepro.2020.124657
  • Sabatier, R., Meyer, K., Wiegand, K., & Clough, Y. (2013). Non-linear effects of pesticide application on biodiversity-driven ecosystem services and disservices in a cacao agroecosystem: A modeling study. Basic and Applied Ecology, 14(2), 115–125. https://doi.org/10.1016/j.baae.2012.12.006
  • Saini, S., & Raina, M. (2022). Spider Nectivory from Extranuptial Nectaries of Urena lobata L.: A Case from Indian Subcontinent. National Academy Science Letters, 45(6), 531–535. https://doi.org/10.1007/s40009-022-01176-w
  • Salim, H., Rawi, C. S. M., Ahmad, A. H., & Al-Shami, S. A. (2015). Efficacy of insecticide and bioinsecticide ground sprays to control Metisa plana Walker (Lepidoptera: Psychidae) in oil palm plantations, Malaysia. Tropical Life Sciences Research, 26(2), 73–83.
  • Segoli, M., & Rosenheim, J. A. (2012). Should increasing the field size of monocultural crops be expected to exacerbate pest damage? Agriculture, Ecosystems and Environment, 150, 38–44. https://doi.org/10.1016/j.agee.2012.01.010
  • Siregar, E. H., Atmowidi, T., & Kahono, S. (2016). Diversity and abundance of insect pollinators in different agricultural lands in Jambi, Sumatera. HAYATI Journal of Biosciences, 23(1), 13–17. https://doi.org/10.1016/j.hjb.2015.11.002
  • Sulaiman, M. N., & Talip, M. S. A. (2021). Sustainable control of bagworm (Lepidoptera: Psychidae) in oil palm plantation: a review paper. International Journal of Agriculture, 11(1988), 47–55.
  • Tillman, P. G., & Mulrooney, J. E. (2000). Effect of selected insecticides on the natural enemies Coleomegilla maculata and Hippodamia convergens (Coleoptera: Coccinellidae), Geocoris punctipes (Hemiptera: Lygaeidae), and Bracon mellitor, Cardiochiles nigriceps, and Cotesia marginiventris (Hymenoptera: Braconidae) in cotton. Journal of Economic Entomology, 93(6), 1638–1643. https://doi.org/10.1603/0022-0493-93.6.1638
  • Toennisson, T. A., Klein, J. T., & Burrack, H. (2019). Measuring the effect of non-crop flowering plants on natural enemies in organic tobacco. Biological Control, 137(July), 104023. https://doi.org/10.1016/j.biocontrol.2019.104023
  • Tohiran, K. A., Nobilly, F., Zulkifli, R., Maxwell, T., Moslim, R., & Azhar, B. (2017). Targeted cattle grazing as an alternative to herbicides for controlling weeds in bird-friendly oil palm plantations. Agronomy for Sustainable Development, 37(6), 1–11. https://doi.org/10.1007/s13593-017-0471-5
  • Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I., & Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecology Letters, 8(8), 857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x
  • Vrdoljak, S. M., & Samways, M. J. (2012). Optimising coloured pan traps to survey flower visiting insects. Journal of Insect Conservation, 16(3), 345–354. https://doi.org/10.1007/s10841-011-9420-9
  • Wood, B. J., & Kamarudin, N. (2019). A review of developments in integrated pest management (IPM) of bagworm (Lepidoptera: Psychidae) infestation in oil palms in Malaysia. Journal of Oil Palm Research, 31(4), 529–539. https://doi.org/10.21894/jopr.2019.0047
  • Yahya, M. S., Atikah, S. N., Mukri, I., Oon, A., Hawa, A., Sanusi, R., Norhisham, A. R., Lechner, A. M., & Azhar, B. (2023). Potential of agroforestry orchards as a conservation set-aside initiative in industrial rubber tree and oil palm plantations for avian biodiversity. Biodiversity and Conservation, 32(6), 2101–2125. https://doi.org/10.1007/s10531-023-02594-y
  • Yap, T. H. (2000). The intelligent management of Lepidoptera leaf eaters in mature oil palm by trunk injection (a review of principles). Planter, Kuala Lumpur, 76(887), 99–107.
  • Zainal Abidin, C. M. R., Mohd Noor, H., Hamid, N. H., Ravindran, S., Puan, C. L., Kasim, A., & Salim, H. (2021). Comparison of effectiveness of introduced barn owls, Tyto javanica javanica, and rodenticide treatments on rat control in oil palm plantations. Journal of Pest Science, 95(2), 1009–1022. https://doi.org/10.1007/s10340-021-01423-x
  • Zemp, D. C., Guerrero-Ramirez, N., Brambach, F., Darras, K., Grass, I., Potapov, A., Röll, A., Arimond, I., Ballauff, J., Behling, H., Berkelmann, D., Biagioni, S., Buchori, D., Craven, D., Daniel, R., Gailing, O., Ellsäßer, F., Fardiansah, R., Hennings, N., … Kreft, H. (2023). Tree islands enhance biodiversity and functioning in oil palm landscapes. Nature, 618(7964), 316–321. https://doi.org/10.1038/s41586-023-06086-5
  • Zhang, X., Ouyang, F., Su, J., Li, Z., Yuan, Y., Sun, Y., Sarkar, S. C., Xiao, Y., & Ge, F. (2022). Intercropping flowering plants facilitate conservation, movement and biocontrol performance of predators in insecticide-free apple orchard. Agriculture, Ecosystems and Environment, 340(April), 108157. https://doi.org/10.1016/j.agee.2022.108157