41
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Effects of vermicompost application on plant growth and soil enzyme activity in wheat (Triticum aestivum L.) monitored by thermal imaging

ORCID Icon
Article: 2373872 | Received 11 Apr 2024, Accepted 24 Jun 2024, Published online: 02 Aug 2024

References

  • Adetunji, A. T., Lewu, F. B., Mulidzi, R., & Ncube, B. (2017). The biological activities of β-glucosidase, phosphatase and urease as soil quality ındicators: a review. Journal of Soil Science and Plant Nutrition, 17(3), 794–807. https://doi.org/10.4067/S0718-95162017000300018
  • Akhzari, D., & Pessarakli, M. (2017). Effects of vermicompost and urea fertilizers on qualitative and quantitative characteristics of vetiveria zizanioides stapf. grown under drought stress conditions. Journal of Plant Nutrition, 40(14), 2063–2075. https://doi.org/10.1080/01904167.2017.1346126
  • Akin, S., & Kaya, C. (2024). Impact of salicylic acid and sodium hydrosulfide applied singly or in combination on drought tolerance and grain yield in wheat plants. Food and Energy Security, 13(1), e532. https://doi.org/10.1002/fes3.532
  • Albiach, R., Canet, R., Pomares, F., & Ingelmo, F. (2000). Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Bioresource Technology, 75(1), 43–48. https://doi.org/10.1016/S0960-8524(00)00030-4
  • Alef, K., & Nannipieri, P. (1995). ‘Methods in applied soil microbiology and biochemistry (p. c1995). Academic Press.
  • Ali, S., Xu, Y., Ma, X., Ahmad, I., Jia, Q., Akmal, M., Hussain, Z., Arif, M., Cai, T., Zhang, J., Jia, Z., Manzoor. 2019. Deficit ırrigation strategies to ımprove winter wheat productivity and regulating root growth under different planting patterns. Agricultural Water Management, 219(June), 1–11. https://doi.org/10.1016/j.agwat.2019.03.038
  • Bandick, A. K., & Dick, R. P. (1999). Field management effects on soil enzyme activities. Soil Biology and Biochemistry, 31(11), 1471–1479. https://doi.org/10.1016/S0038-0717(99)00051-6
  • Basu, S., Duren, W., Evans, C. R., Burant, C. F., Michailidis, G., & Karnovsky, A. (2017). Sparse network modeling and metscape-based visualization methods for the analysis of large-scale metabolomics data. Bioinformatics (Oxford, England), 33(10), 1545–1553. https://doi.org/10.1093/bioinformatics/btx012
  • Beck, T. H. (1971). The determination of catalase activity in soils. Journal of Plant Nutrition and Soil Science, 130, 68–81.
  • Bremner. (1982). Total nitrogen. In Methods of soil analysis (pp. 595–624). https://cir.nii.ac.jp/crid/1570291226053723136.
  • Brucker, E., Kernchen, S., & Spohn, M. (2020). Release of phosphorus and silicon from minerals by soil microorganisms depends on the availability of organic carbon. Soil Biology and Biochemistry, 143(April), 107737. https://doi.org/10.1016/j.soilbio.2020.107737
  • Cañizares, R., Benitez, E., & Ogunseitan, O. A. (2011). Molecular analyses of β-glucosidase diversity and function in soil. European Journal of Soil Biology, 47(1), 1–8. https://doi.org/10.1016/j.ejsobi.2010.11.002
  • Catanzaro, C. J., Williams, K. A., & Sauve, R. J. (1998). Slow release versus water soluble fertilization affects nutrient leaching and growth of potted chrysanthemum. Journal of Plant Nutrition, 21(5), 1025–1036. https://doi.org/10.1080/01904169809365461
  • Cayuela, M. L., Mondini, C., Sánchez-Monedero, M. A., & Roig, A. (2008). Chemical properties and hydrolytic enzyme activities for the characterisation of two-phase olive mill wastes composting. Bioresource Technology, 99(10), 4255–4262. https://doi.org/10.1016/j.biortech.2007.08.057
  • Chen, J., Zhou, S., Rong, Y., Zhu, X., Zhao, X., & Cai, Z. (2017). Pyrosequencing reveals bacterial communities and enzyme activities differences after application of novel chiral ınsecticide paichongding in aerobic soils. Applied Soil Ecology, 112(April), 18–27. https://doi.org/10.1016/j.apsoil.2016.12.007
  • Cordero, I., Snell, H., & Bardgett, R. D. (2019). High throughput method for measuring urease activity in soil. Soil Biology & Biochemistry, 134(July), 72–77. https://doi.org/10.1016/j.soilbio.2019.03.014
  • Deng, S. P., & Tabatabai, M. A. (1997). Effect of tillage and residue management on enzyme activities in soils: III. phosphatases and arylsulfatase. Biology and Fertility of Soils, 24(2), 141–146. https://doi.org/10.1007/s003740050222
  • Dick, R. G., & Burns, R. P. eds. (2002). Enzymes in the environment: activity, ecology, and applications. CRC Press. https://doi.org/10.1201/9780203904039
  • Dick, W. A., & Tabatabai, M. A. (1992). Significance and potential uses of soil enzymes. In Soil microbial ecology: applications in agricultural and environmental management (pp. 95–127). https://www.cabdirect.org/cabdirect/abstract/19931976431.
  • Ebrahimi, M., Mousavi, A., Souri, M. K., & Sahebani, N. (2021). Can vermicompost and biochar control Meloidogyne javanica on eggplant? Nematology, 23(9), 1053–1064. https://doi.org/10.1163/15685411-bja10094
  • Ebrahimi, M., Souri, M. K., Mousavi, A., & Sahebani, N. (2021a). Biochar and vermicompost improve growth and physiological traits of eggplant (Solanum melongena L.) under deficit irrigation. Chemical and Biological Technologies in Agriculture, 8(1), 1–14. https://doi.org/10.1186/s40538-021-00216-9
  • Edwards, C. A. (1995). Historical overview of vermicomposting. Historical Overview of Vermicomposting, 36(6), 56–58.
  • Erdal, İ., & Ekinci, K. (2017). Effects of vermicomposts obtained from rose oil processing wastes, dairy manure, municipal open market wastes and straw on plant growth, mineral nutrition, and nutrient uptake of corn. Journal of Plant Nutrition, 40(15), 2200–2208. https://doi.org/10.1080/01904167.2017.1346677
  • Erdal, İ., & Ekinci, K. (2020). Effects of composts and vermicomposts obtained from forced aerated and mechanically turned composting method on growth, mineral nutrition and nutrient uptake of wheat. Journal of Plant Nutrition, 43(9), 1343–1355. https://doi.org/10.1080/01904167.2020.1727506
  • Gautam, D., & Pagay, V. (2020). A review of current and potential applications of remote sensing to study the water status of horticultural crops. Agronomy, 10(1), 140. https://doi.org/10.3390/agronomy10010140
  • Grant, O. M., Tronina, L., Jones, H. G., & Chaves, M. M. (2007). Exploring thermal ımaging variables for the detection of stress responses in grapevine under different ırrigation regimes. Journal of Experimental Botany, 58(4), 815–825. https://doi.org/10.1093/jxb/erl153
  • Guangming, L., Xuechen, Z., Xiuping, W., Hongbo, S., Jingsong, Y., & Xiangping, W. (2017). Soil enzymes as ındicators of saline soil fertility under various soil amendments. Agriculture, Ecosystems & Environment, 237(January), 274–279. https://doi.org/10.1016/j.agee.2017.01.004
  • Han, X., & Liang, L. (2022). metabolomicsR: A streamlined workflow to analyze metabolomic data in R. Bioinformatics Advances, 2(1), vbac067. https://doi.org/10.1093/bioadv/vbac067
  • Helmke, P. A., & Sparks, D. L. (1996). Lithium, sodium, potassium, rubidium, and cesium. In Methods of soil analysis (pp. 551–574). John Wiley & Sons, Ltd. https://doi.org/10.2136/sssabookser5.3.c19
  • Jami, N., Rahimi, A., Naghizadeh, M., & Sedaghati, E. (2020). Investigating the use of different levels of mycorrhiza and vermicompost on quantitative and qualitative yield of saffron (Crocus Sativus L.). Scientia Horticulturae, 262(February), 109027. https://doi.org/10.1016/j.scienta.2019.109027
  • Jing, C., Xu, Z., Zou, P., Tang, Q., Li, Y., You, X., & Zhang, C. (2019). Coastal halophytes alter properties and microbial community structure of the saline soils in the Yellow River Delta, China. Applied Soil Ecology, 134(February), 1–7. https://doi.org/10.1016/j.apsoil.2018.10.009
  • Jones, J. B., Jr., & Case, V. W. (1990). Sampling, handling, and analyzing plant tissue samples. In Soil testing and plant analysis (pp. 389–427). John Wiley & Sons, Ltd. https://doi.org/10.2136/sssabookser3.3ed.c15
  • Karlsons, A., Osvalde, A., Andersone-Ozola, U., & Ievinsh, G. (2016). Vermicompost from municipal sewage sludge affects growth and mineral nutrition of winter rye (secale cereale) plants. Journal of Plant Nutrition, 39(6), 765–780. https://doi.org/10.1080/01904167.2015.1087566
  • Karmegam, N., Vijayan, P., Prakash, M., & John Paul, J. A. (2019). Vermicomposting of paper ındustry sludge with cowdung and green manure plants using eisenia fetida: a viable option for cleaner and enriched vermicompost production. Journal of Cleaner Production, 228(August), 718–728. https://doi.org/10.1016/j.jclepro.2019.04.313
  • Khosravi, A., Zarei, M., & Ronaghi, A. (2018). Effect of PGPR, phosphate sources and vermicompost on growth and nutrients uptake by lettuce in a calcareous soil. Journal of Plant Nutrition, 41(1), 80–89. https://doi.org/10.1080/01904167.2017.1381727
  • Leinweber, P., Jandl, G., Baum, C., Eckhardt, K.-U., & Kandeler, E. (2008). Stability and composition of soil organic matter control respiration and soil enzyme activities. Soil Biology and Biochemistry, Special Section: Functional Microbial Ecology: Molecular Approaches to Microbial Ecology and Microbial Habitats, 40(6), 1496–1505. https://doi.org/10.1016/j.soilbio.2008.01.003
  • Leirós, M. C., Trasar-Cepeda, C., Camiña, F., & Gil-Sotres, F. (1999). An ımproved method to measure catalase activity in soils. Soil Biology and Biochemistry, 31(3), 483–485. https://doi.org/10.1016/S0038-0717(98)00153-9
  • Li, Y., Niu, W., Wang, J., Liu, L., Zhang, M., & Xu, J. (2016). Effects of artificial soil aeration volume and frequency on soil enzyme activity and microbial abundance when cultivating greenhouse tomato. Soil Science Society of America Journal, 80(5), 1208–1221. https://doi.org/10.2136/sssaj2016.06.0164
  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, ıron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
  • Liu, M., Wang, C., Wang, F., & Xie, Y. (2019). Maize (Zea Mays) growth and nutrient uptake following ıntegrated ımprovement of vermicompost and humic acid fertilizer on coastal saline soil. Applied Soil Ecology, 142(October), 147–154. https://doi.org/10.1016/j.apsoil.2019.04.024
  • Ma, S., Liu, S., Gao, Z., Wang, X., Ma, S., & Wang, S. (2024). Water deficit diagnosis of winter wheat based on thermal ınfrared ımaging. Plants (Basel, Switzerland), 13(3), 361. https://doi.org/10.3390/plants13030361
  • Mahanta, K., Jha, D. K., Rajkhowa, D. J., & Manoj-Kumar. (2012). ‘Microbial enrichment of vermicompost prepared from different plant biomasses and their effect on rice (Oryza Sativa L.) growth and soil fertility’. Biological Agriculture & Horticulture 28(4), 241–250. https://doi.org/10.1080/01448765.2012.738556
  • Mulero, G., Jiang, D., Bonfil, D. J., & Helman, D. (2023). Use of thermal ımaging and the photochemical reflectance ındex (PRI) to detect wheat response to elevated CO2 and drought. Plant, Cell & Environment, 46(1), 76–92. https://doi.org/10.1111/pce.14472
  • Mulidzi, A. R., & Wooldridge, J. (2016). Effect of ırrigation with diluted winery wastewater on enzyme activity in four western cape soils. Sustainability in Environment, 1(2), 141. https://doi.org/10.22158/se.v1n2p141
  • Nagavallemma, K. P., Wani, S. P., Lacroix, S., Padmaja, V. V., Vineela, C., Rao, M. B., & Sahrawat, K. L. (2004). Vermicomposting: Recycling wastes into valuable organic fertilizer.global theme on agroecosystems report no. 8’. monograph. International Crops Research Institute for the Semi-Arid Tropics. 2004. https://oar.icrisat.org/3677/.
  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In Methods of soil analysis (pp. 961–1010). John Wiley & Sons, Ltd. https://doi.org/10.2136/sssabookser5.3.c34
  • Parastesh, F., Ali Alikhani, H., & Etesami, H. (2019). Vermicompost enriched with phosphate–solubilizing bacteria provides plant with enough phosphorus in a sequential cropping under calcareous soil conditions. Journal of Cleaner Production, 221(June), 27–37. https://doi.org/10.1016/j.jclepro.2019.02.234
  • Partey, S. T., Zougmore, R. B., Thevathasan, N. V., & Preziosi, R. F. (2019). Effects of plant residue decomposition on soil N availability, microbial biomass and β-glucosidase activity during soil fertility ımprovement in Ghana. Pedosphere, 29(5), 608–618. https://doi.org/10.1016/S1002-0160(17)60433-8
  • Piñero, J. C., Shivers, T., Byers, P. L., & Johnson, H.-Y. (2020). Insect-based compost and vermicompost production, quality and performance. Renewable Agriculture and Food Systems, 35(1), 102–108. https://doi.org/10.1017/S1742170518000339
  • Pourranjbari Saghaiesh, S., Souri, M. K., & Moghaddam, M. (2019). Characterization of nutrients uptake and enzymes activity in Khatouni Melon (Cucumis Melo Var. Inodorus) seedlings under different concentrations of nitrogen, potassium and phosphorus of nutrient solution. Journal of Plant Nutrition, 42(2), 178–185. https://doi.org/10.1080/01904167.2018.1551491
  • Pramanik, P., Ghosh, G. K., Ghosal, P. K., & Banik, P. (2007). Changes in organic – C, N, P and K and enzyme activities in vermicompost of biodegradable organic wastes under liming and microbial ınoculants. Bioresource Technology, 98(13), 2485–2494. https://doi.org/10.1016/j.biortech.2006.09.017
  • Rowell, M. J., Ladd, J. N., & Paul, E. A. (1973). Enzymically active complexes of proteases and humic acid analogues. Soil Biology and Biochemistry, 5(5), 699–703. https://doi.org/10.1016/0038-0717(73)90062-X
  • Rupasinghe, I. S. U., & Leelamanie, D. A. L. (2020). Comparison of municipal and agriculture-based solid waste composts: short-term crop-yield response and soil properties in a tropical ultisol. Biologia, 75(6), 809–818. https://doi.org/10.2478/s11756-020-00464-4
  • Serri, F., Souri, M. K., & Rezapanah, M. (2021). Growth, biochemical quality and antioxidant capacity of coriander leaves under organic and inorganic fertilization programs. Chemical and Biological Technologies in Agriculture, 8(1), 1–8. https://doi.org/10.1186/s40538-021-00232-9
  • Sharma, K., & Garg, V. K. (2018). Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia Fetida (Sav.). Bioresource Technology, 250(February), 708–715. https://doi.org/10.1016/j.biortech.2017.11.101
  • Sharma, S., Pradhan, K., Satya, S., & Vasudevan, P. (2005). Potentiality of earthworms for waste management and in other uses – a review.
  • Skujin̦š, J. (1973). Dehydrogenase: An ındicator of biological activities in arid soils. Bulletins from the Ecological Research Committee, 17, 235–241. https://www.jstor.org/stable/20111567.
  • Sparks, D. L. (1996). Methods of soil analysis. Part 3, chemical methods. Soil Science Society of America Book Series. Madison, Wis.: Soil Science Society of America : American Society of Agronomy.
  • Srivastava, P. K., Gupta, M., Upadhyay, R. K., Sharma, S., Singh, N., Tewari, S. K., Singh, B., & Shikha. (2012). Effects of combined application of vermicompost and mineral fertilizer on the growth of Allium Cepa L. and soil fertility. Journal of Plant Nutrition and Soil Science 175(1), 101–107. https://doi.org/10.1002/jpln.201000390
  • Tabatabai, M. A. (1982). Soils enzymes dans methods of soil analysis. Part 2 chemical and microbial properties’. Agronomy.
  • Tabatabai, M. A., & Bremner, J. M. (1972). Assay of urease activity in soils. Soil Biology and Biochemistry, 4(4), 479–487. https://doi.org/10.1016/0038-0717(72)90064-8
  • Tao, R., Li, J., Guan, Y., Liang, Y., Hu, B., Lv, J., & Chu, G. (2018). Effects of urease and nitrification ınhibitors on the soil mineral nitrogen dynamics and nitrous oxide (N2O) emissions on calcareous soil. Environmental Science and Pollution Research İnternational, 25(9), 9155–9164. https://doi.org/10.1007/s11356-018-1226-9
  • Uz, I., & Tavali, I. E. (2014). Short-term effect of vermicompost application on biological properties of an alkaline soil with high lime content from mediterranean region of Turkey. TheScientificWorldJournal, 2014(August), e395282–11. https://doi.org/10.1155/2014/395282
  • Wan, Q., Brede, B., Smigaj, M., & Kooistra, L. (2021). Factors ınfluencing temperature measurements from miniaturized Thermal Infrared (TIR) cameras: A laboratory-based approach. Sensors (Basel, Switzerland), 21(24), 8466. https://doi.org/10.3390/s21248466
  • Wang, Q. K., Wang, S. L., & Liu, Y. X. (2008). Responses to N and P fertilization in a young eucalyptus dunnii plantation: microbial properties, enzyme activities and dissolved organic matter. Applied Soil Ecology, 40(3), 484–490. https://doi.org/10.1016/j.apsoil.2008.07.003
  • Xu, K., Zheng, C., & Ye, H. (2020). The transpiration characteristics and heat dissipation analysis of natural leaves grown in different climatic environments. Heat and Mass Transfer, 56(1), 95–108. https://doi.org/10.1007/s00231-019-02701-2
  • Yang, Y., Zhang, Q., Huang, G., Peng, S., & Li, Y. (2020). Temperature responses of photosynthesis and leaf hydraulic conductance in rice and wheat. Plant, Cell & Environment, 43(6), 1437–1451. https://doi.org/10.1111/pce.13743
  • Ye, N., Li, H., Zhu, G., Liu, Y., Liu, R., Xu, W., Jing, Y., Peng, X., & Zhang, J. (2014). Copper suppresses abscisic acid catabolism and catalase activity, and ınhibits seed germination of rice. Plant & Cell Physiology, 55(11), 2008–2016. https://doi.org/10.1093/pcp/pcu136
  • Zelazny, L. W., Marion, L., Jackson, C. H., & Lim. (1986). Oxides, hydroxides, and aluminosilicates. In Methods of soil analysis (pp. 101–150). John Wiley & Sons, Ltd. https://doi.org/10.2136/sssabookser5.1.2ed.c6
  • Zhang, F., Wang, R., Yu, W., Liang, J., & Liao, X. (2020). Influences of a vermicompost application on the phosphorus transformation and microbial activity in a paddy soil. Soil and Water Research, 15(4), 199–210. https://doi.org/10.17221/91/2019-SWR