0
Views
0
CrossRef citations to date
0
Altmetric
Food Science & Technology

Chemodiversity and antimicrobial activities of Eucalyptus spp. essential oils

ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2383318 | Received 30 Jan 2024, Accepted 18 Jul 2024, Published online: 06 Aug 2024

References

  • Aleksic Sabo, V., & Knezevic, P. (2019). Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Industrial Crops and Products, 132, 413–429. https://doi.org/10.1016/j.indcrop.2019.02.051
  • Ameur, E., Sarra, M., Yosra, D., Mariem, K., Nabil, A., Lynen, F., & Larbi, K. M. (2021). Chemical composition of essential oils of eight Tunisian Eucalyptus species and their antibacterial activity against strains responsible for otitis. BMC Complementary Medicine and Therapies, 21(1), 209. https://doi.org/10.1186/s12906-021-03379-y
  • Angane, M., Swift, S., Huang, K., Butts, C. A., & Quek, S. Y. (2022). Essential oils and their major components: An updated review on antimicrobial activities, mechanism of action and their potential application in the food industry. Foods (Basel, Switzerland), 11(3), 464. https://doi.org/10.3390/foods11030464
  • Ashour, H. M. (2008). Antibacterial, antifungal, and anticancer activities of volatile oils and extracts from stems, leaves, and flowers of Eucalyptus sideroxylon and Eucalyptus torquata. Cancer Biology & Therapy, 7(3), 399–403. https://doi.org/10.4161/cbt.7.3.5367
  • Badr, M. M., Badawy, M. E. I., & Taktak, N. E. M. (2021). Characterization, antimicrobial activity, and antioxidant activity of the nanoemulsions of Lavandula spica essential oil and its main monoterpenes. Journal of Drug Delivery Science and Technology, 65, 102732. https://doi.org/10.1016/j.jddst.2021.102732
  • Barbosa, L. C. A., Filomeno, C. A., & Teixeira, R. R. (2016). Chemical variability and biological activities of Eucalyptus spp. essential oils. Molecules (Basel, Switzerland), 21(12), 1671. https://doi.org/10.3390/molecules21121671
  • Batish, D. R., Singh, H. P., Kohli, R. K., & Kaur, S. (2008). Eucalyptus essential oil as a natural pesticide. Forest Ecology and Management, 256(12), 2166–2174. https://doi.org/10.1016/j.foreco.2008.08.008
  • Batista-Pereira, L. G., Fernandes, J. B., da Silva, M. F. G. E., Vieira, P. C., Bueno, O. C., & Corrêa, A. G. (2006). Electrophysiological responses of Atta sexdens rubropilosa workers to EOs of Eucalyptus and its chemical composition. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 61(9–10), 749–755. https://doi.org/10.1515/znc-2006-9-1023
  • Beauchemin, K. A., Ungerfeld, E. M., Abdalla, A. L., Alvarez, C., Arndt, C., Becquet, P., Benchaar, C., Berndt, A., Mauricio, R. M., McAllister, T. A., Oyhantçabal, W., Salami, S. A., Shalloo, L., Sun, Y., Tricarico, J., Uwizeye, A., De Camillis, C., Bernoux, M., Robinson, T., & Kebreab, E. (2022). Current enteric methane mitigation options. Journal of Dairy Science, 105, 9297–9326.
  • Ben Jemâa, J. M., Haouel, S., Bouaziz, M., & Khouja, M. L. (2012). Seasonal variations in chemical composition and fumigant activity of five Eucalyptus EOs against three moth pests of stored dates in Tunisia. Journal of Stored Products Research, 48, 61–67. https://doi.org/10.1016/j.jspr.2011.10.001
  • Caputo, L., Smeriglio, A., Trombetta, D., Cornara, L., Trevena, G., Valussi, M., Fratianni, F., De Feo, V., & Nazzaro, F. (2020). Chemical composition and biological activities of the essential oils of Leptospermum petersonii and Eucalyptus gunnii. Frontiers in Microbiology, 11, 409. https://doi.org/10.3389/fmicb.2020.00409
  • Chouhan, S., Sharma, K., & Guleria, S. (2017). Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines, 4(3), 58. https://doi.org/10.3390/medicines4030058
  • Cordeiro, L., Figueiredo, P., Souza, H., Sousa, A., Andrade-Júnior, F., Medeiros, D., Nóbrega, J., Silva, D., Martins, E., Barbosa-Filho, J., & Lima, E. (2020). Terpinen-4-ol as an antibacterial and antibiofilm agent against Staphylococcus aureus. International Journal of Molecular Sciences, 21(12), 4531. https://doi.org/10.3390/ijms21124531
  • Debbarma, J., Kishore, P., Nayak, B. B., Kannuchamy, N., & Gudipati, V. (2013). Antibacterial activity of ginger, Eucalyptus and sweet orange peel EOs on fish-borne bacteria. Journal of Food Processing and Preservation, 37(5), 1022–1030. https://doi.org/10.1111/j.1745-4549.2012.00753.x
  • Dey, A., Attri, K., Dahiya, S. S., & Paul, S. S. (2021). Influence of dietary phytogenic feed additives on lactation performance, methane emissions and health status of Murrah buffaloes (Bubalus bubalis). Journal of the Science of Food and Agriculture, 101(10), 4390–4397. https://doi.org/10.1002/jsfa.11080
  • Dhar, P., Chan, P., Cohen, D. T., Khawam, F., Gibbons, S., Snyder-Leiby, T., Dickstein, E., Rai, P. K., & Watal, G. (2014). Synthesis, antimicrobial evaluation, and structure-activity relationship of alpha-pinene derivatives. Journal of Agricultural and Food Chemistry, 62(16), 3548–3552. https://doi.org/10.1021/jf403586t
  • Dogan, G., Kara, N., Bagci, E., & Gur, S. (2017). Chemical composition and biological activities of leaf and fruit essential oils from Eucalyptus camaldulensis. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 72(11–12), 483–489. https://doi.org/10.1515/znc-2016-0033
  • Dzul-Beh, A., García-Sosa, K., Uc-Cachón, A. H., Bórquez, J., Loyola, L. A., Barrios-García, H. B., Peña-Rodríguez, L. M., & Molina-Salinas, G. M. (2019). In vitro growth inhibition and bactericidal activity of spathulenol against drug-resistant clinical isolates of Mycobacterium tuberculosis. Revista Brasileira de Farmacognosia, 29(6), 798–800. https://doi.org/10.1016/j.bjp.2019.06.001
  • Elaieb, M. T., Ayed, S. B., Ouellani, S., Khouja, M. L., Touhami, I., & Candelier, K. (2019). Collapse and physical properties of native and pre-steamed Eucalyptus camaldulensis and Eucalyptus saligna wood from Tunisia. Journal of Tropical Forest Science, 31(2), 162–174. https://doi.org/10.26525/jtfs2019.31.2.162174
  • Elaissi, A., Rouis, Z., Salem, N. A. B., Mabrouk, S., Ben Salem, Y., Salah, K. B. H., Aouni, M., Farhat, F., Chemli, R., & Harzallah-Skhiri, F. (2012). Chemical composition of 8 Eucalyptus species’ essential oils and the evaluation of their antibacterial, antifungal and antiviral activities. BMC Complementary and Alternative Medicine, 12, 1–15.
  • Fidan, H., Stefanova, G., Kostova, I., Stankov, S., Damyanova, S., Stoyanova, A., & Zheljazkov, V. D. (2019). Chemical composition and antimicrobial activity of Laurus nobilis L. essential oils from Bulgaria. Molecules (Basel, Switzerland), 24(4), 804. https://doi.org/10.3390/molecules24040804
  • Ghaffar, A., Yameen, M., Kiran, S., Kamal, S., Jalal, F., Munir, B., Saleem, S., Rafiq, N., Ahmad, A., Saba, I., & Jabbar, A. (2015). Chemical composition and in-vitro evaluation of the antimicrobial and antioxidant activities of essential oils extracted from seven Eucalyptus species. Molecules (Basel, Switzerland), 20(11), 20487–20498. https://doi.org/10.3390/molecules201119706
  • Goldbeck, J. C., do Nascimento, J. E., Jacob, R. G., Fiorentini, Â. M., & da Silva, W. P. (2014). Bioactivity of essential oils from Eucalyptus globulus and Eucalyptus urograndis against planktonic cells and biofilms of Streptococcus mutans. Industrial Crops and Products, 60, 304–309. https://doi.org/10.1016/j.indcrop.2014.05.030
  • Hamdi, S. H., Hedjal-Chebheb, M., Kellouche, A., Khouja, M. L., Boudabous, A., & Ben Jemâa, J. M. (2015). Management of three pests’ population strains from Tunisia and Algeria using Eucalyptus essential oils. Industrial Crops and Products, 74, 551–556. https://doi.org/10.1016/j.indcrop.2015.05.072
  • Horst, E. H., Ammar, H., Ben Rhouma, R., Khouja, M., Khouja, M. L., Giráldez, F. J., & López, S. (2022a). Seasonal and species variations in the nutritive value of Eucalyptus foliage as a potential feed resource for ruminants in silvopastoral systems. Agroforestry Systems, 96(8), 1189–1198. https://doi.org/10.1007/s10457-022-00777-0
  • Horst, E. H., Ammar, H., Khouja, M. L., Vargas, J. E., Andrés, S., & López, S. (2022b). In vitro screening of the foliage of Eucalyptus species harvested in different seasons for modulating rumen fermentation and methane production. Agriculture, 12(12), 2153. https://doi.org/10.3390/agriculture12122153
  • Johansen, B., Duval, R. E., & Sergere, J. C. (2022). First evidence of a combination of terpinen-4-ol and α-terpineol as a promising tool against ESKAPE pathogens. Molecules (Basel, Switzerland), 27(21), 7472. https://doi.org/10.3390/molecules27217472
  • Kouki, H., Polito, F., De Martino, L., Mabrouk, Y., Hamrouni, L., Amri, I., Fratianni, F., De Feo, V., & Nazzaro, F. (2022). Chemistry and bioactivities of six Tunisian Eucalyptus species. Pharmaceuticals, 15(10), 1265. https://doi.org/10.3390/ph15101265
  • Li, L., Shi, C., Yin, Z., Jia, R., Peng, L., Kang, S., & Li, Z. (2014). Antibacterial activity of α-terpineol may induce morphostructural alterations in Escherichia coli. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology], 45(4), 1409–1413. https://doi.org/10.1590/s1517-83822014000400035
  • Limam, H., Ben Jemaa, M., Tammar, S., Ksibi, N., Khammassi, S., Jallouli, S., Del Re, G., & Msaada, K. (2020). Variation in chemical profile of leaves essential oils from thirteen Tunisian Eucalyptus species and evaluation of their antioxidant and antibacterial properties. Industrial Crops and Products, 158, 112964. https://doi.org/10.1016/j.indcrop.2020.112964
  • Lucia, A., Licastro, S., Zerba, E., Gonzalez, A. P., & Masuh, H. (2009). Sensitivity of Aedes aegypti adults (Diptera: Culicidae) to the vapors of Eucalyptus EOs. Bioresource Technology, 100(23), 6083–6087. https://doi.org/10.1016/j.biortech.2009.02.075
  • Marchese, A., Arciola, C., Barbieri, R., Silva, A., Nabavi, S., Tsetegho Sokeng, A., Izadi, M., Jafari, N., Suntar, I., Daglia, M., & Nabavi, S. (2017). Update on monoterpenes as antimicrobial agents: A particular focus on p-cymene. Materials, 10(8), 947. https://doi.org/10.3390/ma10080947
  • Marzoug, H. N. B., Romdhane, M., Lebrihi, A., Mathieu, F., Couderc, F., Abderraba, M., Khouja, M. L., & Bouajila, J. (2011). Eucalyptus oleosa essential oils: Chemical composition and antimicrobial and antioxidant activities of the oils from different plant parts (stems, leaves, flowers and fruits). Molecules (Basel, Switzerland), 16(2), 1695–1709. https://doi.org/10.3390/molecules16021695
  • Mediouni Ben Jemâa, J., Haouel, S., & Khouja, M. L. (2013). Efficacy of Eucalyptus EOs fumigant control against Ectomyelois ceratoniae (Lepidoptera: Pyralidae) under various space occupation conditions. Journal of Stored Products Research, 53, 67–71. https://doi.org/10.1016/j.jspr.2013.02.007
  • Melkina, O. E., Plyuta, V. A., Khmel, I. A., & Zavilgelsky, G. B. (2021). The mode of action of cyclic monoterpenees (−)-limoneneand (+)-α-pinene on bacterial cells. BioMolecules, 11(6), 806. https://doi.org/10.3390/biom11060806
  • Mossi, A. J., Astolfi, V., Kubiak, G., Lerin, L., Zanella, C., Toniazzo, G., Oliveira, D. d., Treichel, H., Devilla, I. A., Cansian, R., & Restello, R. (2011). Insecticidal and repellency activity of essential oil of Eucalyptus sp. against Sitophilus zeamais Motschulsky (Coleoptera, Curculionidae). Journal of the Science of Food and Agriculture, 91(2), 273–277. https://doi.org/10.1002/jsfa.4181
  • Mulyaningsih, S., Sporer, F., Zimmermann, S., Reichling, J., & Wink, M. (2010). Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 17(13), 1061–1066. https://doi.org/10.1016/j.phymed.2010.06.018
  • Polito, F., Kouki, H., Khedhri, S., Hamrouni, L., Mabrouk, Y., Amri, S., Nazzaro, F., Fratianni, F., & De Feo, V. (2022). Chemical composition and phytotoxic and antibiofilm activity of the essential oils of E. bicostata, E. gigantea, E. intertexta, E. obliqua, E. pauciflora, and E. tereticornis. Plants, 11(22), 3017. https://doi.org/10.3390/plants11223017
  • Salem, M. Z. M., Zidan, Y. E., Mansour, M. M. A., El Hadidi, N. M. N., & Abo Elgat, W. A. A. (2016). Antifungal activities of two essential oils used in the treatment of three commercial woods deteriorated by five common mold fungi. International Biodeterioration & Biodegradation, 106, 88–96. https://doi.org/10.1016/j.ibiod.2015.10.010
  • Slimane, B. B., Ezzine, O., Dhahri, S., & Jamaa, M. L. B. (2014). Essential oils from two Eucalyptus from Tunisia and their insecticidal action on Orgyia trigotephras (Lepidotera, Lymantriidae). Biological Research, 47(1), 29. https://doi.org/10.1186/0717-6287-47-29
  • Tan, M., Zhou, L., Huang, Y., Wang, Y., Hao, X., & Wang, J. (2008). Antimicrobial activity of globulol isolated from the fruits of Eucalyptus globulus labill. Natural Product Research, 22(7), 569–575. https://doi.org/10.1080/14786410701592745
  • Verdeguer, M., Blázquez, M. A., & Boira, H. (2009). Phytotoxic effects of Lantana camara, Eucalyptus camaldulensis and Eriocephalus africanus EOs in weeds of Mediterranean summer crops. Biochemical Systematics and Ecology, 37(4), 362–369. https://doi.org/10.1016/j.bse.2009.06.003
  • Viljoen, A. M., Klepser, M. E., Ernst, E. J., Keele, D., Roling, E., Van Vuuren, S., Demirci, B., Baser, K. F. C., van Wyk, B.-E., & Jäger, A. K. (2002). The composition and antimicrobial activity of the essential oil of the resurrection plant Myrothamnus flabellifolius. South African Journal of Botany, 68(1), 100–105. https://doi.org/10.1016/S0254-6299(15)30450-6
  • Wang, Y., Zhang, Y., Song, X., Fang, C., Xing, R., Liu, L., Zhao, X., Zou, Y., Li, L., Jia, R., Ye, G., Shi, F., Zhou, X., Zhang, Y., Wan, H., Wei, Q., & Yin, Z. (2022). 1,8-Cineole inhibits biofilm formation and bacterial pathogenicity by suppressing luxS gene expression in Escherichia coli. Frontiers in Pharmacology, 13, 988245. https://doi.org/10.3389/fphar.2022.988245
  • Xiang, F., Bai, J., Tan, X., Chen, T., Yang, W., & He, F. (2018). Antimicrobial activities and mechanism of the essential oil from Artemisia argyi Levl. et Van. var. argyi cv. Qiai. Industrial Crops and Products, 125, 582–587. https://doi.org/10.1016/j.indcrop.2018.09.048
  • Yangui, I., Zouaoui Boutiti, M., Boussaid, M., & Messaoud, C. (2017). Essential oils of Myrtaceae species growing wild in Tunisia: Chemical variability and antifungal activity against Biscogniauxia mediterranea, the causative agent of charcoal canker. Chemistry & Biodiversity, 14(7), e1700058. https://doi.org/10.1002/cbdv.201700058
  • Zomorodian, K., Moein, M., Pakshir, K., Karami, F., & Sabahi, Z. (2017). Chemical composition and antimicrobial activities of the essential oil from Salvia mirzayanii leaves. Journal of Evidence-Based Complementary & Alternative Medicine, 22(4), 770–776. https://doi.org/10.1177/2156587217717414