605
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Footprint of triplet scalar dark matter in direct, indirect search and invisible Higgs decay

& | (Reviewing Editor)
Article: 1047559 | Received 25 Jan 2015, Accepted 22 Apr 2015, Published online: 29 May 2015

References

  • Aad, G., Abajyan, T., Abbott, B., Abdallah, J., Abdel Khalek, S., Abdinov, O., ... AbouZeid, O. S. (2014). Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS. Physical Review Letters, 112(20), 201802. doi:10.1103/physrevlett.112.201802
  • Ackermann, M., Ajello, M., Albert, A., Allafort, A., Baldini, L., Barbiellini, G., ... Bissaldi, E. (2013). Search for gamma-ray spectral lines with the fermi large area telescope and dark matter implications. Physical Review Letters, 88(8), 082002. doi:10.1103/physrevd.88.082002
  • Ade, P. A. R., Aghanim, N., Armitage-Caplan, C., Arnaud, M., Ashdown, M., Atrio-Barandela, F., ... Barreiro, R. B. (2014). Planck 2013 results. XVI. Cosmological parameters. Astronomy & Astrophysics, 571, A16. doi:10.1051/0004-6361/201321591
  • Akerib, D. S., Araújo, H. M., Bai, X., Bailey, A. J., Balajthy, J., Bedikian, S., ... Bradley, A. (2014). First results from the LUX dark matter experiment at the Sanford Underground Research Facility. Physical Review Lettters, 112(9), 091303. arXiv: 1310.8214 [astro-ph.CO].doi:10.1103/physrevlett.112.091303
  • Araki, T., Geng, C. Q., & Nagao, K. I. (2011). Dark matter in inert triplet models. Physical Review D, 83(7), 075014. doi:10.1103/physrevd.83.075014
  • Ayazi, S. Y., & Firouzabadi, S. M. (2014). Constraining inert triplet dark matter by the LHC and FermiLAT. Journal of Cosmology and Astroparticle Physics, 2014, 005. doi:10.1088/1475-7516/2014/11/005
  • Bélanger, G., Boudjema, F., Pukhov, A., & Semenov, A. (2014). micrOMEGAs\_3: A program for calculating dark matter observables. Computer Physics Communications, 185, 960–985.
  • Bento, M. C., Bertolami, O., & Rosenfeld, R. (2001). Cosmological constraints on an invisibly decaying Higgs. Physics Letters B, 518, 276–281. doi:10.1016/s0370-2693(01)01078-4
  • Brein, O., Djouadi, A., & Harlander, R. (2004). NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders. Physics Letters B, 579, 149–156. doi:10.1016/j.physletb.2003.10.112
  • Burgess, C. P., Pospelov, M., & ter Veldhuis, T. (2001). The minimal model of nonbaryonic dark matter: A singlet scalar. Nuclear Physics B, 619, 709–728. doi:10.1016/s0550-3213(01)00513-2
  • Cirelli, M., Fornengo, N., & Strumia, A. (2006). Minimal dark matter. Nuclear Physics B, 753, 178–194. doi:10.1016/j.nuclphysb.2006.07.012
  • Davoudiasl, H., Kitano, R., Li, T., & Murayama, H. (2005). The new minimal standard model. Physics Letters B, 609, 117–123. doi:10.1016/j.physletb.2005.01.026
  • Denner, A., Heinemeyer, S., Puljak, I., Rebuzzi, D., & Spira, M. (2011). Standard model Higgs-boson branching ratios with uncertainties. European Physical Journal C, 71(9), 1753. doi:10.1140/epjc/s10052-011-1753-8
  • Dittmaier, S., Mariotti, C., Passarino, G., Tanaka, R., Alekhin, S., Alwall, J., ... Zanderighi, G. [LHC Higgs Cross Section Working Group Collaboration]. (2012). Handbook of LHC Higgs Cross Sections: 2. Differential distributions. Geneva: CERN. arxiv: 1201.3084 [hep-ph].
  • Dittmaier, S., Mariotti, C., Passarino, G., Tanaka, R., Baglio, J., Bolzoni, P., ... Zirke, T. [LHC Higgs Cross Section Working Group Collaboration]. (2011). Handbook of LHC Higgs Cross Sections: 1. Inclusive observables (CERN-2011-002(153)). Geneva: CERN. doi:10.5170/CERN-2011-002
  • Ettefaghi, M. M., & Moazzemi, R. (2013). Annihilation of singlet fermionic dark matter into two photons. Journal of Cosmology and Astroparticle Physics, 2013, 048. doi:10.1088/1475-7516/2013/02/048
  • Giedt, J., Thomas, A. W., & Young, R. D. (2009). Dark matter, constrained minimal supersymmetric standard model, and lattice QCD. Physical Review Letters, 103(20), 201802. doi:10.1103/physrevlett.103.201802
  • He, X.-G., Li, T., Li, X.-Q., Tandean, J., & Tsai, H.-C. (2009). Constraints on scalar dark matter from direct experimental searches. Physical Review D, 79(2), 023521. doi:10.1103/physrevd.79.023521
  • Heinemeyer, S., Mariotti, C., Passarino, G., Tanaka, R., Andersen, J. R., Artoisenet, P., ... Zuberi, S. [LHC Higgs Cross Section Working Group Collaboration]. (2013). Handbook of LHC Higgs Cross Sections: 3. Higgs properties ( CERN-2013-004, FERMILAB-CONF-13-667-T(120)). Geneva: CERN. doi:10.5170/CERN-2013-004
  • Kim, Y. G., & Lee, K. Y. (2007). Minimal model of fermionic dark matter. Physical Review D, 75(11), 115012. doi:10.1103/physrevd.75.115012
  • McDonald, J. (1994). Gauge singlet scalars as cold dark matter. Physical Review D, 50, 3637–3649. doi:10.1103/physrevd.50.3637
  • McDonald, J. (2002). Thermally generated gauge singlet scalars as self-interacting dark matter. Physical Review Letters, 88(9), 091304. doi:10.1103/physrevlett.88.091304
  • Navarro, J. F., Frenk, C. S., & White, S. D. M. (1996). The structure of cold dark matter halos. The Astrophysical Journal, 462, 563–578. doi:10.1086/177173
  • Semenov, A. V. (2009). LanHEP-A package for the automatic generation of Feynman rules in field theory [Version 3.0]. Computer Physics Communications, 180, 431–454. doi:10.1016/j.cpc.2008.10.012