786
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Ab-initio study of C15-type Laves phase superconductor LaRu2

, & | (Reviewing Editor)
Article: 1360461 | Received 29 May 2017, Accepted 23 Jul 2017, Published online: 07 Aug 2017

References

  • Aydin, S., & Simsek, M. (2009). First-principles calculations of MnB 2, TcB 2, and ReB 2 within the ReB 2-type structure. Physical Review B, 80, 20096.10.1103/PhysRevB.80.134107
  • Born, M. (1940). On the stability of crystal lattices (p. 160). Cambridge: Cambridge University Press.
  • Clarke, D. R. (2003). Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 163–164, 67–74.10.1016/S0257-8972(02)00593-5
  • Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. J., Refson, K., & Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift für Kristallographie-Crystalline Materials, 220, 567–570.
  • Compton, V. B., & Matthias, B. T. (1959). Laves phase compounds of rare earths and hafnium with noble metals. Acta Crystallographica, 12, 651–654.10.1107/S0365110X59001918
  • Deligoz, E., Colakoglu, K., Ozisik, H., & Cifti, Y. O. (2013). The first principles investigation of lattice dynamical and thermodynamical properties of Al2Ca and Al2Mg compounds in the cubic Laves structure. Computational Materials Science, 68, 27–31.10.1016/j.commatsci.2012.10.006
  • Fagan, S. B., Mota, R., Baierle, R. J., Paiva, G., da Silva, A. J. R., & Fazzio, A. (2001). Stability investigation and thermal behavior of a hypothetical silicon nanotube. Journal of Molecular Structure: Theochem, 539, 101–106.10.1016/S0166-1280(00)00777-6
  • Fox, M. (1972). Optical properties of solids. New York, NY: Academic Press.
  • Fu, H. Z., Li, D. H., Peng, F., Gao, T., & Cheng, X. L. (2008). Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures. Computational Materials Science, 44, 774–778.10.1016/j.commatsci.2008.05.026
  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., … Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21, 395502. doi:10.1088/0953-8984/21/39/395502
  • Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 65, 349–354.10.1088/0370-1298/65/5/307
  • Hohenberg, P., & Kohn, W. (1964). Elementary excitations in solids. Physical Review, 136, B864–B871.10.1103/PhysRev.136.B864
  • Hossain, M. A., Ali, M. S., & Islam, A. K. M. A. (2012). Rare earth rhodium borides RRh3B (R= Y, Zr, and Nb): mechanical, thermal and optical properties. The European Physical Journal B, 85, 97.10.1140/epjb/e2012-30799-0
  • Karki, B. B., Stixrude, L., Clark, S. J., Warren, M. C., Ackland, G. J., & Crain, J. (1997). Structure and elasticity of MgO at high pressure. American Mineralogist, 82, 51–60.10.2138/am-1997-1-207
  • Keitz, V. A., & Sauthoff, G. (2002). Laves phases for high temperatures—Part II: Stability and mechanical properties. Intermetallics, 10, 497–510.10.1016/S0966-9795(02)00025-0
  • Klein, B. M., Pickett, W. E., Papaconstantopoulos, D. A., & Boyer, L. L. (1983). Electronic structure, superconductivity, and magnetism in the C15 compound ZrV2, ZrFe2, and ZrCo2. Physical Review B, 27, 6721–6731.10.1103/PhysRevB.27.6721
  • Liu, Q. J., Liu, Z. T., Feng, L. P., & Tian, H. (2011). First-principles study of structural, elastic, electronic and optical properties of orthorhombic NaAlF4. Computational Materials Science, 50, 2822.10.1016/j.commatsci.2011.04.037
  • Liu, Y., Hu, W. C., Li, D. J., Zeng, X. Q., Xu, C. S., & Yang, X. J. (2012). First-principles investigation of structural and electronic properties of MgCu2 Laves phase under pressure. Intermetallics, 31, 257–263.
  • Mao, X. C., Liu, K., Hou, B. S., Tan, J., & Zhou, X. L. (2016). Theoretical investigation of the structural, elastic, and thermodynamic properties of MgAl2O4 spinel under high pressure. Journal of the Physical Society of Japan, 85, 114605.10.7566/JPSJ.85.114605
  • Materials Studio CASTEP Manual_Accelrys. (2010). pp. 261–262. Retrieved from www.tcm.phy.cam.ac.uk/castep/documentation/WebHelp/CASTEP.html
  • Mayer, B., Anton, H., Bott, E., Methfessel, M., Sticht, J., Harris, J., & Schmidt, P. C. (2003). Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases. Intermetallics, 11, 23–32.10.1016/S0966-9795(02)00127-9
  • McMillan, W. L. (1968). Transition temperature of strong-coupled superconductors. Physical Review, 167, 331–344.10.1103/PhysRev.167.331
  • Mehl, M. J., Klein, B. M., & Papaconstantopoulos, D. A. (1994). First principles calculations of elastic properties of metals. Citeseer.
  • Mulliken, R. S. (1955). Theoretical studies of icosahedral C 60 and some related species. The Journal of Chemical Physics, 23, 1833.10.1063/1.1740588
  • Nye, J. F. (1961). Propriétés physiques des matériaux. Paris: Dunod.
  • Okaniwa, H., Shindo, D., Yoshida, M., & Takasugi, T. (1999). Determination of site occupancy of additives X (X¼V, Mo, W and Ti) in the Nb-Cr-X Laves phase by ALCHEMI. Acta Materialia, 47, 1987–1992.10.1016/S1359-6454(99)00065-8
  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865–3868.10.1103/PhysRevLett.77.3865
  • Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 100, 136406–136409.10.1103/PhysRevLett.100.136406
  • Pettifor, D. G. (1992). Theoretical predictions of structure and related properties of intermetallics. Materials Science and Technology, 8, 345–349.10.1179/mst.1992.8.4.345
  • Pfrommer, B. G., Côté, M., Louie, S. G., & Cohen, M. L. (1997). Relaxation of crystals with the Quasi-Newton method. Journal of Computational Physics, 131, 233.10.1006/jcph.1996.5612
  • Pugh, S. F. (1954). XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45, 823–843.10.1080/14786440808520496
  • Rahaman, M. Z., & Rahman, M. A. (2016). Novel Laves phase superconductor NbBe2: A theoretical investigation. Computational Condensed Matter, 8, 7–13.
  • Rahaman, M. Z., & Rahman, M. A. (2017a). ThCr2Si2-type Ru-based superconductors LaRu2M2 (M= P and As): An ab initio investigation. Journal of Alloys and Compounds, 695, 2827–2834.
  • Rahaman, M. Z., & Rahman, M. A. (2017b). Novel 122-type Ir-based superconductors BaIr2Mi2 (Mi= P and As): A density functional study. Journal of Alloys and Compounds, 711, 327–334.
  • Rahman, M. A., Rahaman, M. Z., & Sarker, M. A. R. (2016). First principles investigation of structural, elastic, electronic and optical properties of HgGeB2 (B = P, As) chalcopyrite semiconductors. Computational Condensed Matter, 9, 19–26.
  • Rapp, Ö., Invarsson, J., & Claeson, T. (1974). Search for superconductivity in Laves phase compounds. Physics Letters A, 50, 159–160.10.1016/0375-9601(74)90770-1
  • Sands, D. E., Zalkin, A., & Krikorian, O. H. (1959). , The crystal structure of NbBe2 and NbBe3. Acta Crystallographica, 12, 461–464.10.1107/S0365110X59001384
  • Savrasov, S. Y., & Savrasov, D. Y. (1996). Electron-phonon interactions and related physical properties of metals from linear-response theory. Physical Review B, 54, 16487–16501.10.1103/PhysRevB.54.16487
  • Segall, M. D., Shah, R., Pickard, C. J., & Payne, M. C. (1996). Population analysis of plane-wave electronic structure calculations of bulk materials. Physical Review B, 54, 16317–16320.10.1103/PhysRevB.54.16317
  • Shen, Y., Clarke, D. R., & Fuierer, P. P. A. (2008). Anisotropic thermal conductivity of the Aurivillus phase, bismuth titanate (Bi4Ti3O12): A natural nanostructured superlattice. Applied Physics Letters, 93, 102907–102907.10.1063/1.2975163
  • Thoma, D. J., Chu, F., Peralta, P., Kotula, P. G., Chen, K. C., & Mitchell, T. E. (1997). Elastic and mechanical properties of Nb(Cr, V)2 C15 Laves phases. Materials Science and Engineering A, 239–240, 251–259.10.1016/S0921-5093(97)00589-3
  • Wang, J. Y., & Zhou, Y. C. (2004). Dependence of elastic stiffness on electronic band structure of nanolaminate M 2 AlC (M= Ti, V, Nb, and Cr) ceramics. Physical Review B, 69, 392.10.1103/PhysRevB.69.214111
  • Wu, M. M., Wen, L., Tang, B. Y., Peng, L. M., & Ding, W. J. (2010). First-principles study of elastic and electronic properties of MgZn2 and ScZn2 phases in Mg-Sc-Zn alloy. Journal of Alloys and Compounds, 506, 412–417.10.1016/j.jallcom.2010.07.018
  • Wu, Z. J., Zhao, E. J., Xiang, H. P., Hao, X. F., Liu, X. J., & Meng, J. (2007). Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Physical Review B, 76, 054115–054129.
  • Zhang, X. Y., Lin, C., Ma, M. Z., Zhu, Y., Zhang, Y. Z., & Liu, R. P. (2011). Structural, elastic, and thermal properties of Laves phase ZrV2 under pressure. Journal of Applied Physics, 109, 113523–113527.10.1063/1.3590707