1,156
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Enhancement of pyrene degradation efficacy of Synechocystis sp., by construction of an artificial microalgal-bacterial consortium

, , & | (Reviewing Editor)
Article: 1064193 | Received 04 Feb 2015, Accepted 22 May 2015, Published online: 22 Jul 2015

References

  • Abbassi, B. E., & Shquirat, W. D. (2008). Kinetics of indigenous isolated bacteria used for ex-situ bioremediation of petroleum contaminated soil. Water, Air, and Soil Pollution, 192, 221–226.10.1007/s11270-008-9649-4
  • Ascon-Cabrera, M., & Lebeault, J. M. (1993). Selection of xenobiotic degrading microorganisms in a biphasic aqueous-organic system. Applied and Environmental Microbiology, 59, 1717–1724.
  • Chaillan, F., Gugger, M., Saliot, A., Couté, A., & Oudot, J. (2006). Role of cyanobacteria in the biodegradation of crude oil by a tropical cyanobacterial mat. Chemosphere, 62, 1574–1582.10.1016/j.chemosphere.2005.06.050
  • Cheung, P. Y., & Kinkle, B. K. (2005). Changes in Mycobacterium spp. population structure and pyrene mineralization in polycyclic aromatic hydrocarbon-amended soils. Soil Biology and Biochemistry, 37, 1929–1937.10.1016/j.soilbio.2005.02.029
  • de Godos, I., Vargas, V. A., Guzmán, H. O., Soto, R., García, B., García, P. A., & Muñoz, R. (2014). Assessing carbon and nitrogen removal in a novel anoxic–aerobic cyanobacterial–bacterial photobioreactor configuration with enhanced biomass sedimentation. Water Research, 61, 77–85.10.1016/j.watres.2014.04.050
  • Djomo, J. E., Dauta, A., Ferrier, V., Narbonne, J. F., Monkiedje, A., & Njine, T. (2004). Toxic effects of some major polyaromatic hydrocarbons found in crude oil and aquatic sediments on Scenedesmus subspicatus. Water Research, 38, 1817–1821.10.1016/j.watres.2003.10.023
  • Gibson, D. T., Mahadevan, V., Jerina, D., Yogi, H., & Yeh, H. J. C. (1975). Oxidation of the carcinogens benzo [a] pyrene and benzo [a] anthracene to dihydrodiols by a bacterium. Science, 189, 295–297.10.1126/science.1145203
  • Jacques, R. J. S., Santos, E. C., Bento, F. M., Peralba, M. C. R., Selbach, P. A., Sá, E. L. S., & Camargo, F. A. O. (2005). Anthracene biodegradation by Pseudomonas sp. isolated from a petrochemical sludge landfarming site. International Biodeterioration & Biodegradation, 56, 143–150.10.1016/j.ibiod.2005.06.005
  • Jeffrey, S. W., & Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural populations. Biochemie und Physiologie der Pflanzen, 167, 191–194.
  • Jensen, M. H., Nielsen, T. G., & Dahllof, I. (2008). Effects of pyrene on grazing and reproduction of Calanus finmarchicus and Calanus glacialis from Disko Bay, West Greenland. Aquatic Toxicology, 87, 99–107.10.1016/j.aquatox.2008.01.005
  • Kafilzadeh, F., & HoshyariPour, F. (2012). Degradation of naphthalene, phenanthrene and pyrene by Pseudomonas sp. and Corynebacterim sp. in the landfills. International Journal of Biosciences, 2, 77–84.
  • Kathuria, V. (2007). Informal regulation of pollution in a developing country: Evidence from India. Ecological Economics, 63, 403–417.10.1016/j.ecolecon.2006.11.013
  • Lei, A., Hu, Z., Wong, Y., & Tam, N. F. (2006). Antioxidant responses of microalgal species to pyrene. Journal of Applied Physiology, 18, 67–78.
  • Luo, Y. R., Tian, Y., Huang, X., Yan, C. L., Hong, H. S., Lin, G. H., & Zheng, T. L. (2009). Analysis of community structure of a microbial consortium capable of degrading benzo(a)pyrene by DGGE. Marine Pollution Bulletin, 58, 1159–1163.10.1016/j.marpolbul.2009.03.024
  • Muñoz, R., Guieysse, B., & Mattiasson, B. (2003). Phenanthrene biodegradation by an algal–bacterial consortium in two-phase partitioning bioreactors. Applied Microbiology and Biotechnology, 61, 261–267.
  • Nirmal Kumar, J. I., Patel, J. G., Kumar, R. N., & Khan, S. R. (2014). Chronic response of three different cyanobacterial species on growth, pigment, and metabolic variations to the high molecular weight polycyclic aromatic hydrocarbon—Pyrene. Polycyclic Aromatic Compounds, 34, 143–160.10.1080/10406638.2013.867514
  • Okay, O. S., Tolun, L., Tüfekçi, V., Telli-Karakoç, F., & Donkin, P. (2006). Effects of pyrene on mussels in different experimental conditions. Environment International, 32, 538–544.10.1016/j.envint.2005.12.005
  • Radwan, S. S., Al-Hasan, R. H., Ali, N., Salamah, S., & Khanafer, M. (2005). Oil-consuming microbial consortia floating in the Arabian Gulf. International Biodeterioration & Biodegradation, 56, 28–33.10.1016/j.ibiod.2005.03.007
  • Raeid, M. M. A. (2010). Interaction between microalgae and aerobic heterotrophic bacteria in the degradation of hydrocarbons. International Biodeterioration & Biodegradation, 64, 58–64.
  • Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111, 1–61.10.1099/00221287-111-1-1
  • Safonova, E. T., Dmitrieva, I. A., & Kvitko, K. V. (1999). The interaction of algae with alcanotrophic bacteria in black oil decomposition. Resources Conservation and Recycling, 27, 193–201.10.1016/S0921-3449(99)00014-2
  • Said, O. B., Gon, U., Bour, M. E., Dellali, M., Aissa, P., & Duran, R. (2007). Characterization of aerobic polycyclic aromatic hydrocarbon-degrading bacteria from Bizerte lagoon sediments Tunisi. Journal of Applied Microbiology, 104, 987–997.
  • Samanta, S. K., Singh, O. V., & Jain, R. K. (2002). Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends in Biotechnology, 20, 243–248.10.1016/S0167-7799(02)01943-1
  • Sarma, P. M., Duraja, P., Deshpande, S., & Lal, B. (2010). Degradation of pyrene by an enteric bacterium, Leclercia adecarboxylata PS4040. Biodegradation, 21, 59–69.10.1007/s10532-009-9281-z
  • Sikkema, J., De Bont, J. A., & Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiology and Molecular Biology Reviews, 59, 201–222.
  • Tang, X., He, L. Y., Tao, X. Q., Dang, Z., Guo, C. L., Lu, G. N., & Yi, X. Y. (2010). Construction of an artificial microalgal–bacterial consortium that efficiently degrades crude oil. Journal of Hazardous Materials, 181, 1158–1162.10.1016/j.jhazmat.2010.05.033
  • Vilas, P., Siddharth, J., & Datta, M. (2012). Naphthalene degradation by bacterial consortium (DV-AL) developed from Alang-Sosiya ship breaking yard, Gujarat, India. Bioresource Technology, 107, 122–130.
  • Xiaojun, L., Peijun, L., Xin, L., Chungui, Z., Li, Q., & Zongqiang, G. (2007). Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases. Journal of Hazardous Materials, 150, 21–26. doi:10.1016/j.jhazmat.2007.04.04
  • Yin, Y., Wang, X. R., Sun, Y. Y., Guo, H. Y., & Yin, D. Q. (2008). Bioaccumulation and oxidative stress in submerged macrophyte Ceratophyllum demersum L. upon exposure to pyrene. Environmental Toxicology, 23, 328–336.10.1002/(ISSN)1522-7278
  • Zapata-Pérez, O., Gold-Bouchot, G., Ortega, A., López, T., & Albores, A. (2002). Effect of pyrene on hepatic cytochrome P450 1A (CYP1A) expression in Nile Tilapia (Oreochromis niloticus). Archives of Environmental Contamination and Toxicology, 42, 477–485.10.1007/s00244-001-0018-1