685
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Antibacterial activity of 3,6-di(pyridin-2-yl)-1,2,4,5-s-tetrazine capped Pd(0) nanoparticles against Gram-positive Bacillus subtilis bacteria

, , & | (Reviewing Editor)
Article: 1249232 | Received 29 Aug 2016, Accepted 07 Oct 2016, Published online: 02 Nov 2016

References

  • Adams, C. P., Walker, K. A., Obare, S. O., Docherty, K. M., & van Raaij, M. J. (2014). Size-dependent antimicrobial effects of novel palladium nanoparticles. PLoS ONE, 9, e85981.10.1371/journal.pone.0085981
  • Agnihotri, S., Mukherji, S., & Mukherji, S. (2013). Immobilized silver nanoparticles enhance contact killing and show highest efficacy: Elucidation of the mechanism of bactericidal action of silver. Nanoscale, 5, 7328–7340.10.1039/c3nr00024a
  • Astruc, D. (2007). Palladium nanoparticles as efficient green homogeneous and heterogeneous carbon−carbon coupling precatalysts: A unifying view. Inorganic Chemistry, 46, 1884–1894.10.1021/ic062183h
  • Baccar, H., Adams, C. P., Abdelghani, A., & Obare, S. O. (2013). Chronoamperometric-based detection of hydrogen peroxide using palladium nanoparticles. International Journal of Nanotechnology, 10, 563–576.10.1504/IJNT.2013.053525
  • Beney, L., & Gervais, P. (2001). Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses. Applied Microbiology and Biotechnology, 57, 34–42.
  • Boomi, P., & Prabu, H. G. (2013). Synthesis, characterization and antibacterial analysis of polyaniline/Au–Pd nanocomposite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 429, 51–59.10.1016/j.colsurfa.2013.03.053
  • Cady, N. C., Behnke, J. L., & Strickland, A. D. (2011). Copper-based nanostructured coatings on natural cellulose: Nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro. Advanced Functional Materials, 21, 2506–2514.10.1002/adfm.201100123
  • Chang, Z., Fan, H., Zhao, K., Chen, M., He, P., & Fang, Y. (2008). Electrochemical DNA biosensors based on palladium nanoparticles combined with carbon nanotubes. Electroanalysis, 20, 131–136.10.1002/(ISSN)1521-4109
  • Cioffi, N., Torsi, L., Ditaranto, N., Tantillo, G., Ghibelli, L., Sabbatini, L., … Traversa, E. (2005). copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chemistry of Materials, 17, 5255–5262.10.1021/cm0505244
  • Das, S., Samanta, S., Ray, S., & Biswas, P. (2015). 3,6-Di(pyridin-2-yl)-1,2,4,5-tetrazine capped Pd(0) nanoparticles: A catalyst for copper-free Sonogashira coupling of aryl halides in aqueous medium. RSC Advances, 5, 75263–75267.10.1039/C5RA13252E
  • Dobson, J. (2006). Magnetic nanoparticles for drug delivery. Drug Development Research, 67, 55–60.10.1002/(ISSN)1098-2299
  • Eckhardt, S., Brunetto, P. S., Gagnon, J., Priebe, M., Giese, B., & Fromm, K. M. (2013). Nanobio silver: Its interactions with peptides and bacteria, and its uses in medicine. Chemical Reviews, 113, 4708–4754.10.1021/cr300288v
  • Favier, F., Walter, E. C., Zach, M. P., Benter, T., & Penner, R. M. (2001). Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science, 293, 2227–2231.10.1126/science.1063189
  • Garoufis, A., Hadjikakou, S. K., & Hadjiliadis, N. (2005). In M. Gielen & E. R. T. Tiekink (Eds.), Metals in medicine, Palladium (Pd), in metallotherapeutic drugs and metal-based diagnostic agents: The use of metals in medicine (pp. 399–415). John Wiley & Sons.
  • Garoufis, A., Hadjikakou, S. K., & Hadjikakou, N. (2009). Palladium coordination compounds as anti-viral, anti-fungal, anti-microbial and anti-tumor agents. Coordination Chemistry Reviews, 253, 1384–1397.10.1016/j.ccr.2008.09.011
  • Hamouda, T., & Baker, Jr., J. R. (2000). Antimicrobial mechanism of action of surfactant lipid preparations in enteric Gram-negative bacilli. Journal of Applied Microbiology, 89, 397–403.10.1046/j.1365-2672.2000.01127.x
  • Hao, N., Jayawardana, K. W., Chen, X., & Yan, M. (2015). One-step synthesis of amine-functionalized hollow mesoporous silica nanoparticles as efficient antibacterial and anticancer materials. ACS Applied Materials & Interfaces, 7, 1040–1045.10.1021/am508219g
  • Heck, R. F. (1968a). The arylation of allylic alcohols with organopalladium compounds. A new synthesis of 3-aryl aldehydes and ketones. Journal of the American Chemical Society, 90, 5526–5531.10.1021/ja01022a035
  • Heck, R. F. (1968b). Allylation of aromatic compounds with organopalladium salts. Journal of the American Chemical Society, 90, 5531–5534.10.1021/ja01022a036
  • Heck, R. F. (1968c). The palladium-catalyzed arylation of enol esters, ethers, and halides. A new synthesis of 2-aryl aldehydes and ketones. Journal of the American Chemical Society, 90, 5535–5538.10.1021/ja01022a037
  • Heck, R. F. (1968d). The addition of alkyl- and arylpalladium chlorides to conjugated dienes. Journal of the American Chemical Society, 90, 5542–5546.
  • Heck, R. F., & Nolley, J. P. (1972). Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. The Journal of Organic Chemistry, 37, 2320–2322.10.1021/jo00979a024
  • Ilić, V., Šaponjić, Z., Vodnik, V., Potkonjak, B., Jovančić, P., Nedeljković, J., & Radetić, M. (2009). The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles. Carbohydrate Polymers, 78, 564–569.
  • Jana, R., Pathak, T. P., & Sigman, M. S. (2011). Advances in transition metal (Pd,Ni,Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chemical Reviews, 111, 1417–1492.10.1021/cr100327p
  • Kamat, P. V., & Meisel, D. (2003). Nanoscience opportunities in environmental remediation. Comptes Rendus Chimie, 6, 999–1007.10.1016/j.crci.2003.06.005
  • Kim, Y. H., Lee, D. K., Cha, H. G., Kim, C. W., & Kang, Y. S. (2007). Synthesis and characterization of antibacterial Ag−SiO2 nanocomposite. The Journal of Physical Chemistry C, 111, 3629–3635.10.1021/jp068302w
  • Li, W., & Szoka, Jr., F. C. (2007). Lipid-based nanoparticles for nucleic acid delivery. Pharmaceutical Research, 24, 438–449.10.1007/s11095-006-9180-5
  • Liang, X., Sun, M., Li, L., Qiao, R., Chen, K., Xiao, Q., & Xu, F. (2012). Preparation and antibacterial activities of polyaniline/Cu0.05Zn0.95O nanocomposites. Dalton Transactions, 41, 2804–2811.10.1039/c2dt11823h
  • Ma, S., Izutani, N., Imazato, S., Chen, J. H., Kiba, W., Yoshikawa, R., … Ebisu, S. (2012). Assessment of bactericidal effects of quaternary ammonium-based antibacterial monomers in combination with colloidal platinum nanoparticles. Dental Materials Journal, 31, 150–156.10.4012/dmj.2011-180
  • Malleron, J. L., Fiaud, J. C., & Legros, J. Y. (2000). Handbook of palladium-catalyzed organic reactions. London: Academic Press.
  • Manolova, V., Flace, A., Bauer, M., Schwarz, K., Saudan, P., & Bachmann, M. F. (2008). Nanoparticles target distinct dendritic cell populations according to their size. European Journal of Immunology, 38, 1404–1413.10.1002/(ISSN)1521-4141
  • Mei, L., Zhang, X., Wang, Y., Zhang, W., Lu, Z., Luo, Y., … Li, C. (2014). Multivalent polymer–Au nanocomposites with cationic surfaces displaying enhanced antimicrobial activity. Polymer Chemistry, 5, 3038–3044.10.1039/c3py01578e
  • Milstein, D., & Stille, J. K. (1978). A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium. Journal of the American Chemical Society, 100, 3636–3638.10.1021/ja00479a077
  • Miyaura, N., & Suzuki, A. (1995). Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chemical Reviews, 95, 2457–2483.10.1021/cr00039a007
  • Mueller, N. C., & Nowack, B. (2008). Exposure modeling of engineered nanoparticles in the environment. Environmental Science & Technology, 42, 4447–4453.10.1021/es7029637
  • Nel, A. E., Mädler, L., Velegol, D., Xia, T., Hoek, E. M. V., Somasundaran, P., … Thompson, M. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 8, 543–557.10.1038/nmat2442
  • Neuberger, T., Schöpf, B., Hofmann, H., Hofmann, M., & von Rechenberg, B. (2005). Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic Materials, 293, 483–496.10.1016/j.jmmm.2005.01.064
  • Nutt, M. O., Hughes, J. B., & Wong, M. S. (2005). Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. Environmental Science & Technology, 39, 1346–1353.10.1021/es048560b
  • Ojas, M., Bhagat, M., Gopalakrishnan, C., & Arunachalam, K. D. (2008). Ultrafine dispersed CuO nanoparticles and their antibacterial activity. Journal of Experimental Nanoscience, 3, 185–193.
  • Rhim, J.-W., Hong, S.-I., Park, H.-M., & Ng, P. K. W. (2006). Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. Journal of Agricultural and Food Chemistry, 54, 5814–5822.10.1021/jf060658h
  • Silvestro, L., Weiser, J. N., & Axelsen, P. H. (2000). Antibacterial and antimembrane activities of Cecropin A in Escherichia coli. Antimicrobial Agents and Chemotherapy, 44, 602–607.
  • Soenen, S. J., Rivera-Gil, P., Montenegro, J.-M., Parak, W. J., & De Smedt, S. C. (2011). Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today, 6, 446–465.10.1016/j.nantod.2011.08.001
  • Sonogashira, K. J. (2002). Development of Pd–Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides. Journal of Organometallic Chemistry, 653, 46–49.10.1016/S0022-328X(02)01158-0
  • Stoimenov, P. K., Klinger, R. L., Marchin, G. L., & Klabunde, K. J. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir, 18, 6679–6686.10.1021/la0202374
  • Tamboli, M. S., Kulkarni, M. V., Patil, R. H., Gade, W. N., Navale, S., & Kale, B. B. (2012). Nanowires of silver–polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids and Surfaces B: Biointerfaces, 92, 35–41.10.1016/j.colsurfb.2011.11.006
  • Thill, A., Zeyons, O., Spalla, O., Chauvat, F., Rose, J., Auffan, M., & Flank, A. M. (2006). Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environmental Science & Technology, 40, 6151–6156.10.1021/es060999b
  • Tratnyek, P. G., & Johnson, R. L. (2006). Nanotechnologies for environmental cleanup. Nano Today, 1, 44–48.10.1016/S1748-0132(06)70048-2
  • Vukoje, I. D., Džunuzović, E. S., Vodnik, V. V., Dimitrijević, S., Ahrenkiel, S. P., & Nedeljković, J. M. (2014). Synthesis, characterization, and antimicrobial activity of poly(GMA-co-EGDMA) polymer decorated with silver nanoparticles. Journal of Materials Science, 49, 6838–6844.10.1007/s10853-014-8386-x
  • Weissleder, R., Kelly, K., Sun, E. Y., Shtatland, T., & Josephson, L. (2005). Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nature Biotechnology, 23, 1418–1423.10.1038/nbt1159
  • Widenhoefer, R. A., & Buchwald, S. L. (1996). Formation of palladium bis(amine) complexes from reaction of amine with palladium tris(o-tolyl)phosphine mono(amine) complexes. Organometallics, 15, 3534–3542.10.1021/om9603169
  • Witham, C. A., Huang, W., Tsung, C. K., Kuhn, J. N., Somorjai, G. A., & Toste, F. D. (2010). Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nature Chemistry, 2, 36–41.10.1038/nchem.468
  • Xiu, Z.-M., Zhang, Q.-B., Puppala, H. L., Colvin, V. L., & Alvarez, P. J. J. (2012). Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Letters, 12, 4271–4275.10.1021/nl301934w
  • Yu, S., Welp, U., Hua, L. Z., Rydh, A., Kwok, W. K., & Wang, H. H. (2005). Fabrication of palladium nanotubes and their application in hydrogen sensing. Chemistry of Materials, 17, 3445–3450.10.1021/cm048191i
  • Zhang, H., & Chen, G. (2009). Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol−gel method. Environmental Science & Technology, 43, 2905–2910.10.1021/es803450f
  • Zhang, D., Wei, S., Kaila, C., Su, X., Wu, J., Karki, A. B., … Guo, Z. (2010). Carbon-stabilized iron nanoparticles for environmental remediation. Nanoscale, 2, 917–919.