636
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Effects of visual feedback on motion mimicry ability during video-based rehabilitation

, , & | (Reviewing Editor)
Article: 1215284 | Received 06 Jun 2016, Accepted 18 Jul 2016, Published online: 23 Aug 2016

References

  • Buccino, G., Binkofski, F., & Riggio, L. (2004). The mirror neuron system and action recognition. Brain and Language, 89, 370–376.10.1016/S0093-934X(03)00356-0
  • Buccino, G., Solodkin, A., & Small, S. L. (2006). Functions of the Mirror Neuron System: Implications for Neurorehabilitation. Cognitive and Behavioral Neurology, 19, 55–63.10.1097/00146965-200603000-00007
  • Celnik, P., Stefan, K., Hummel, F., Duque, J., Classen, J., & Cohen, L. G. (2006). Encoding a motor memory in the older adult by action observation. NeuroImage, 29, 677–684.10.1016/j.neuroimage.2005.07.039
  • Chua, M. C. H., & Chui, C.-K. (2016). Optimization of patient-specific design of medical implants for manufacturing. Procedia CIRP, 40, 402–406.10.1016/j.procir.2016.01.078
  • Chua, M., Chui, C.-K., Chng, C.-B., & Lau, D. (2013). Carbon nanotube-based artificial tracheal prosthesis: Carbon nanocomposite implants for patient-specific ENT care. IEEE Nanotechnology Magazine, 7, 27–31.10.1109/MNANO.2013.2289691
  • Chua, M., Chui, C.-K., & Teo, C. (2015). Computer aided design and experiment of a novel patient-specific carbon nanocomposite voice prosthesis. Computer-Aided Design, 59, 109–118.10.1016/j.cad.2014.09.002
  • Chua, M., Chui, C.-K., Teo, C., & Lau, D. (2015). Patient-specific carbon nanocomposite tracheal prosthesis. The International Journal of Artificial Organs, 38, 31–38.10.5301/ijao.5000374
  • Cifuentes, C. A., Braidot, A., Frisoli, M., Santiago, A., Frizera, A., & Moreno, J. (2013). Evaluation of IMU ZigBee sensors for upper limb rehabilitation. In J. L. Pons, D. Torricelli, & M. Pajaro (Eds.), Converging Clinical and Engineering Research on Neurorehabilitation (pp. 461–465). Berlin Heidelberg: Springer.
  • Cifuentes, C., Braidot, A., Rodríguez, L., Frisoli, M., Santiago, A., & Frizera, A. (2012). Development of a wearable ZigBee sensor system for upper limb rehabilitation robotics. In 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) (pp. 1989–1994). Rome: IEEE.
  • Ertelt, D., Small, S., Solodkin, A., Dettmers, C., McNamara, A., Binkofski, F., & Buccino, G. (2007). Action observation has a positive impact on rehabilitation of motor deficits after stroke. NeuroImage, 36, T164–T173.10.1016/j.neuroimage.2007.03.043
  • Giggins, O., Kelly, D., & Caulfield, B.( 2013). Evaluating rehabilitation exercise performance using a single inertial measurement unit. In Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare (pp. 49–56). Brussels: Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering.
  • Grafton, S. T., Arbib, M. A., Fadiga, L., & Rizzolatti, G. (1996). Localization of grasp representations in humans by positron emission tomography. Experimental Brain Research, 112, 103–111.
  • Iacoboni, M., & Mazziotta, J. C. (2007). Mirror neuron system: Basic findings and clinical applications. Annals of Neurology, 62, 213–218.10.1002/(ISSN)1531-8249
  • McGarry, L. M., & Russo, F. A. (2011). Mirroring in dance/movement therapy: Potential mechanisms behind empathy enhancement. The Arts in Psychotherapy, 38, 178–184.10.1016/j.aip.2011.04.005
  • Michaelsen, S. M., Dannenbaum, R., & Levin, M. F. (2006). Task-specific training with trunk restraint on arm recovery in stroke: Randomized control trial. Stroke, 37, 186–192.10.1161/01.STR.0000196940.20446.c9
  • Muratori, L. M., Lamberg, E. M., Quinn, L., & Duff, S. V. (2013). Applying principles of motor learning and control to upper extremity rehabilitation. Journal of Hand Therapy, 26, 94–103.10.1016/j.jht.2012.12.007
  • Neo, E. B.-W., Low, J.-H., Krishnan, R. G., Barraza, L. C. H., & Yeow, C.-H.. (2013). Investigation of the motion mimicking ability in healthy subjects during simple and complex tasks. In Proceedings of the 7th International Convention on Rehabilitation Engineering and Assistive Technology (p. 8). Singapore: Singapore Therapeutic, Assistive & Rehabilitative Technologies (START) Centre.
  • Oouchida, Y., & Izumi, S.-I. (2012). application of imitation learning for rehabilitation of stroke patients. In T. Yamaguchi (Ed.), Nano-Biomedical Engineering 2012 (pp. 543–552). Sendai: World Scientific.
  • Pasch, M., Bianchi-Berthouze, N., van Dijk, B., & Nijholt, A. (2009). Movement-based sports video games: Investigating motivation and gaming experience. Entertainment Computing, 1, 49–61.10.1016/j.entcom.2009.09.004
  • Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3, 131–141.10.1016/0926-6410(95)00038-0
  • Salbach, N., Mayo, N., Wood-Dauphinee, S., Hanley, J., Richards, C., & Côté, R. (2004). A task-orientated intervention enhances walking distance and speed in the first year post stroke: A randomized controlled trial. Clinical Rehabilitation, 18, 509–519.10.1191/0269215504cr763oa
  • Salmoni, A. W., Schmidt, R. A., & Walter, C. B. (1984). Knowledge of results and motor learning: A review and critical reappraisal. Psychological Bulletin, 95, 355–386.10.1037/0033-2909.95.3.355
  • Schmidt, R. A. (1991). Frequent augmented feedback can degrade learning: Evidence and interpretations. In J. Requin & G. E. Stelmach (Eds.), Tutorials in motor neuroscience (pp. 59–75). Netherlands: Springer.
  • van Vliet, P. M., & Wulf, G. (2006). Extrinsic feedback for motor learning after stroke: What is the evidence? Disability and Rehabilitation, 28, 831–840.10.1080/09638280500534937
  • Whitall, J., Waller, S. M., Silver, K. H., & Macko, R. F. (2000). Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke, 31, 2390–2395.10.1161/01.STR.31.10.2390
  • Yap, H. K., Goh, J. C. H., & Yeow, R. C. H. (2014). Characterization of a soft bending actuator for rehabilitation application. In Proceedings of the international Convention on Rehabilitation Engineering & Assistive Technology (p. 1). Singapore: Singapore Therapeutic, Assistive & Rehabilitative Technologies (START) Centre.
  • Yap, H. K., Goh, J. C. H., & Yeow, R. C. H. (2015). Design and characterization of soft actuator for hand rehabilitation application. In 6th European Conference of the International Federation for Medical and Biological Engineering (pp. 367–370). Dubrovnik: Springer International Publishing.
  • Yap, H. K., Lim, J. H., Nasrallah, F., Goh, J. C., & Yeow, R. C. (2015). A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness. In 2015 IEEE International Conference on Robotics and Automation (ICRA) (pp. 4967–4972). Seattle, WA: IEEE.
  • Yap, H. K., Nasrallah, F., Lim, J. H., Low, F.-Z., Goh, J. C., & Yeow, R. C. (2015). MRC-glove: A fMRI compatible soft robotic glove for hand rehabilitation application. In 2015 IEEE International Conference on Rehabilitation Robotics (ICORR) (pp. 735–740). Singapore: IEEE.
  • Yutaka, O., Eizaburo, S., Naoki, A., Naoyuki, T., & Shin-ichi, I. (2013). Applications of observational learning in neurorehabilitation. International Journal of Physical Medicine & Rehabilitation, 1, Article ID: 1000146.
  • Zheng, H., Black, N. D., & Harris, N. D. (2005). Position-sensing technologies for movement analysis in stroke rehabilitation. Medical & Biological Engineering & Computing, 43, 413–420.10.1007/BF02344720