631
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Immediate effects of different upper limb robot-assisted training modes in patients after stroke: A case series

, , & | (Reviewing Editor)
Article: 1240282 | Received 10 Aug 2016, Accepted 14 Sep 2016, Published online: 17 Oct 2016

References

  • Ansari, N. N., Naghdi, S., Hasson, S., Fakhari, Z., Mashayekhi, M., & Herasi, M. (2009). Assessing the reliability of the Modified Modified Ashworth Scale between two physiotherapists in adult patients with hemiplegia. NeuroRehabilitation, 25, 235–240.
  • Ansari, N. N., Naghdi, S., Mashayekhi, M., Hasson, S., Fakhari, Z., & Jalaie, S. (2012). Intra-rater reliability of the Modified Modified Ashworth Scale (MMAS) in the assessment of upper-limb muscle spasticity. NeuroRehabilitation, 31, 215–222.
  • Armstrong, A. D., MacDermid, J. C., Chinchalkar, S., Stevens, R. S., & King, G. J. (1998). Reliability of range-of-motion measurement in the elbow and forearm. Journal of Shoulder and Elbow Surgery, 7, 573–580.10.1016/S1058-2746(98)90003-9
  • Balasubramanian, S., Klein, J., & Burdet, E. (2010). Robot-assisted rehabilitation of hand function. Current Opinion in Neurology, 23, 661–670.10.1097/WCO.0b013e32833e99a4
  • Barreca, S., (Kelly) Gowland, C., Stratford, P., Huijbregts, M., Griffiths, J., Torresin, W., ... Masters, L. (2004). Development of the chedoke arm and hand activity inventory: theoretical constructs, item generation, and selection. Topics in Stroke Rehabilitation, 11, 31–42.10.1310/JU8P-UVK6-68VW-CF3W
  • Barreca, S., Stratford, P., Masters, L., Lambert, C. L., Griffiths, J., & McBay, C. (2006). Validation of three shortened versions of the chedoke arm and hand activity inventory. Physiotherapy Canada, 58, 148–156.10.3138/ptc.58.2.148
  • Bohannon, R. W. (1987). Variability and reliability of the pendulum test for spasticity using a Cybex II isokinetic dynamometer. Physical Therapy, 67, 659–661.
  • Bosecker, C., Dipietro, L., Volpe, B., & Igo Krebs, H. (2010). Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke. Neurorehabilitation and Neural Repair, 24, 62–69.10.1177/1545968309343214
  • Brock, K., Haase, G., Rothacher, G., & Cotton, S. (2011). Does physiotherapy based on the Bobath concept, in conjunction with a task practice, achieve greater improvement in walking ability in people with stroke compared to physiotherapy focused on structured task practice alone? A pilot randomized controlled trial. Clinical Rehabilitation, 25, 903–912.10.1177/0269215511406557
  • Bütefisch, C., Hummelsheim, H., Denzler, P., & Mauritz, K. H. (1995). Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. Journal of the Neurological Sciences, 130, 59–68.10.1016/0022-510X(95)00003-K
  • French, B., Thomas, L. H., Leathley, M. J., Sutton, C. J., McAdam, J., Forster, A., ... Watkins, C. L. (2007). Repetitive task training for improving functional ability after stroke. Cochrane Database Systematic Review, 4, CD006073.
  • Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J., Berry, J. D., Borden, W. B., ... Turner, M. B. (2013). Heart disease and stroke statistics–2013 update: A report from the American heart association. Circulation, 127, e6–e245.10.1161/CIR.0b013e31828124ad
  • Harris, J. E., & Eng, J. J. (2007). Paretic upper-limb strength best explains arm activity in people with stroke. Physical Therapy, 87, 88–97.10.2522/ptj.20060065
  • Huang, V. S., & Krakauer, J. W. (2009). Robotic neurorehabilitation: A computational motor learning perspective. Journal of NeuroEngineering and Rehabilitation, 6, 5.10.1186/1743-0003-6-5
  • Hwangbo, P. N., & Don Kim, K. (2016). Effects of proprioceptive neuromuscular facilitation neck pattern exercise on the ability to control the trunk and maintain balance in chronic stroke patients. Journal of Physical Therapy Science, 28, 850–853.10.1589/jpts.28.850
  • Klamroth-Marganska, V., Blanco, J., Campen, K., Curt, A., Dietz, V., Ettlin, T., ... Luft, A. (2013). Three-dimensional, task-specific robot therapy of the arm after stroke: A multicentre, parallel-group randomised trial. The Lancet Neurology, 13, 159–166.
  • Kolber, M. J., Fuller, C., Marshall, J., Wright, A., & Hanney, W. J. (2012). The reliability and concurrent validity of scapular plane shoulder elevation measurements using a digital inclinometer and goniometer. Physiotherapy Theory and Practice, 28, 161–168.
  • Kong, K. H., & Lee, J. (2013). Temporal recovery and predictors of upper limb dexterity in the first year of stroke: A prospective study of patients admitted to a rehabilitation centre. NeuroRehabilitation, 32, 345–350.
  • Krabben, T., Prange, G. B., Molier, B. I., Stienen, A. H., Jannink, M. J., Buurke, J. H., & Rietman, J. S. (2012). Influence of gravity compensation training on synergistic movement patterns of the upper extremity after stroke, a pilot study. Journal of NeuroEngineering and Rehabilitation, 9, 44.10.1186/1743-0003-9-44
  • Kwakkel, G., Kollen, B. J., & Krebs, H. I. (2008). Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review. Neurorehabilitation and Neural Repair, 22, 111–121.
  • Langhammer, B., & Stanghelle, J. K. (2000). Bobath or motor relearning programme? A comparison of two different approaches of physiotherapy in stroke rehabilitation: A randomized controlled study. Clinical Rehabilitation, 14, 361–369.10.1191/0269215500cr338oa
  • Lo, H. S., & Xie, S. Q. (2012). Exoskeleton robots for upper-limb rehabilitation: State of the art and future prospects. Medical Engineering & Physics, 34, 261–268.10.1016/j.medengphy.2011.10.004
  • Loureiro, R. C., Harwin, W. S., Nagai, K., & Johnson, M. (2011). Advances in upper limb stroke rehabilitation: A technology push. Medical & Biological Engineering & Computing, 49, 1103–1118.10.1007/s11517-011-0797-0
  • Meadmore, K. L., Hughes, A. M., Freeman, C. T., Cai, Z., Tong, D., Burridge, J. H., & Rogers, E. (2012). Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke. Journal of NeuroEngineering and Rehabilitation, 9, 32.10.1186/1743-0003-9-32
  • Meadmore, K., Exell, T., Freeman, C., Kutlu, M., Rogers, E., Hughes, A. M., ... Burridge, J. (2013). Electrical stimulation and iterative learning control for functional recovery in the upper limb post-stroke. IEEE International Conference on Rehabilation Robotics, 2013, 6650359.
  • Mehrholz, J., Hadrich, A., Platz, T., Kugler, J., & Pohl, M. (2012). Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Systematic Review, 6, CD006876.
  • Naghdi, S., Ansari, N. N., Mansouri, K., Asgari, A., Olyaei, G. R., & Kazemnejad, A. (2008). Neurophysiological examination of the Modified Modified Ashworth Scale (MMAS) in patients with wrist flexor spasticity after stroke. Electromyography and Clinical Neurophysiology, 48, 35–41.
  • Nef, T., Mihelj, M., & Riener, R. (2007). ARMin: A robot for patient-cooperative arm therapy. Medical & Biological Engineering & Computing, 45, 887–900.10.1007/s11517-007-0226-6
  • Norouzi-Gheidari, N., Archambault, P. S., & Fung, J. (2012). Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: Systematic review and meta-analysis of the literature. The Journal of Rehabilitation Research and Development, 49, 479–496.10.1682/JRRD.2010.10.0210
  • Olive, M. L., & Franco, J. H. (2008). (Effect) size matters: And so does the calculation. The Behavior Analyst Today, 9, 5–10.10.1037/h0100642
  • Rossini, P. M., Calautti, C., Pauri, F., & Baron, J. C. (2003). Post-stroke plastic reorganisation in the adult brain. The Lancet Neurology, 2, 493–502.10.1016/S1474-4422(03)00485-X
  • Sampson, P., Freeman, C., Coote, S., Demain, S., Feys, P., Meadmore, K., & Hughes, A. M. (2016). Using functional electrical stimulation mediated by iterative learning control and robotics to improve arm movement for people with multiple sclerosis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24, 235–248.10.1109/TNSRE.2015.2413906
  • Schweighofer, N., Choi, Y., Winstein, C., & Gordon, J. (2012). Task-oriented rehabilitation robotics. American Journal of Physical Medicine & Rehabilitation, 91, S270–S279.10.1097/PHM.0b013e31826bcd42
  • Staubli, P., Nef, T., Klamroth-Marganska, V., & Riener, R. (2009). Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: Four single cases. Journal of NeuroEngineering and Rehabilitation, 6, 46.10.1186/1743-0003-6-46
  • Vaughan-Graham, J., Cott, C., & Wright, F. V. (2015). The Bobath (NDT) concept in adult neurological rehabilitation: What is the state of the knowledge? A scoping review. Part II: Intervention studies perspectives. Disability and Rehabilitation, 37, 1909–1928.10.3109/09638288.2014.987880
  • Wagenaar, R., & Meyer, O. (1991). Effects of stroke rehabilitation, I: A critical review of the literature. Journal of Rehabilation Science, 4, 61–73.
  • Waldner, A., Tomelleri, C., & Hesse, S. (2009). Transfer of scientific concepts to clinical practice: Recent robot-assisted training studies. Functional Neurology, 24, 173–177.