755
Views
6
CrossRef citations to date
0
Altmetric
Research Article

A cyber training framework for orthopedic surgery

, , & | (Reviewing Editor)
Article: 1419792 | Received 10 Nov 2017, Accepted 18 Dec 2017, Published online: 17 Jan 2018

References

  • Bayonat, S., García, M., Mendoza, C., & Ferniindez, J. M. (2006, July). Shoulder arthroscopy training system with force feedback. In International conference on medical information visualisation-biomedical visualisation (MedVis’ 06) (pp. 71–76). IEEE.
  • Berman, M. (2014). GENI: A federated testbed for innovative network experiments. Computer Networks, 61, 5–23.
  • Blyth, P., Stott, N. S., & Anderson, I. A. (2007). A simulation-based training system for hip fracture fixation for use within the hospital environment. Injury, 38(10), 1197–1203.
  • Caceres, R., & Friday, A. (2012). Ubicomp systems at 20: Progress, opportunities, and challenges. IEEE Pervasive Computing, 11, 14–21.
  • Cecil, J., Kumar, M. B. R., Gupta, A., Pirela-Cruz, M., Chan-Tin, E., & Yu, J. (2016, October). Development of a virtual reality based simulation environment for orthopedic surgical training. In OTM confederated international conferences “on the move to meaningful internet systems” (pp. 206–214). Cham: Springer.
  • Cecil, J., Xavier-Cecil, A., & Gupta, A. (2017, August). Foundational elements of next generation cyber physical and iot frameworks for distributed collaboration. In Automation science and engineering (CASE), 2017 IEEE International Conference on CASE. Xian: IEEE.
  • Choi, K. S., Soo, S., & Chung, F. L. (2009). A virtual training simulator for learning cataract surgery with phacoemulsification. Computers in Biology and Medicine, 39(11), 1020–1031.
  • Class Diagrams. (2017). Retrieved from https://www.visual-paradigm.com/VPGallery/diagrams/Class.html
  • Communication Diagrams. (2017). Retrieved from http://agilemodeling.com/style/collaborationDiagram.htm
  • Cosman, P. H., Cregan, P. C., Martin, C. J., & Cartmill, J. A. (2002). Virtual reality simulators: Current status in acquisition and assessment of surgical skills. ANZ Journal of Surgery, 72(1), 30–34.
  • Echegaray, G., Herrera, I., Aguinaga, I., Buchart, C., & Borro, D. (2014). A brain surgery simulator. IEEE Computer Graphics and Applications, 34(3), 12–18.
  • IoT. (2017). Retrieved from http://internetofthingsagenda.techtarget.com/definition/IoMT-Internet-of-Medical-Things
  • Istepanian, R. S. H., Hu, S., Philip, N. Y., & Sungoor, A. (2011, August). The potential of Internet of m-health Things “m-IoT” for non-invasive glucose level sensing. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 5264–5266). IEEE.
  • Jia, M., Wang, L., Guo, Q., Gu, X., & Xiang, W. (2017). A low complexity detection algorithm for fixed up-link SCMA system in mission critical scenario. IEEE Internet of Things Journal.
  • Kunkler, K. (2006). The role of medical simulation: An overview. The International Journal of Medical Robotics and Computer Assisted Surgery, 2(3), 203–210.
  • Lin, Y., Wang, X., Wu, F., Chen, X., Wang, C., & Shen, G. (2014). Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill. Journal of Biomedical Informatics, 48, 122–129.
  • Long, V. N., & Hoang, N. A. (2017, June). Development of IoT based lower limb exoskeleton in rehabilitation. In Ubiquitous robots and ambient intelligence (URAI), 2017 14th international conference on (pp. 824–826). IEEE.
  • Luciano, C., Banerjee, P., & DeFanti, T. (2009). Haptics-based virtual reality periodontal training simulator. Virtual Reality, 13(2), 69–85.
  • Morris, D., Sewell, C., Blevins, N., Barbagli, F., & Salisbury, K. (2004, September). A collaborative virtual environment for the simulation of temporal bone surgery. In International conference on medical image computing and computer-assisted intervention (pp. 319–327). Springer Berlin Heidelberg.
  • Oliveira, J. C., & Georganas, N. D. (2003). VELVET: An adaptive hybrid architecture for very large virtual environments. Presence: Teleoperators and Virtual Environments, 12(6), 555–580.
  • Peters, T. M., Linte, C. A., Moore, J., Bainbridge, D., Jones, D. L., & Guiraudon, G. M. (2008, August). Towards a medical virtual reality environment for minimally invasive cardiac surgery. In International workshop on medical imaging and virtual reality (pp. 1–11). Springer Berlin Heidelberg.
  • Pettersson, J., Palmerius, K. L., Knutsson, H., Wahlstrom, O., Tillander, B., & Borga, M. (2008). Simulation of patient specific cervical hip fracture surgery with a volume haptic interface. IEEE Transactions on Biomedical Engineering, 55(4), 1255–1265.
  • Qin, J., Choi, K. S., Poon, W. S., & Heng, P. A. (2009). A framework using cluster-based hybrid network architecture for collaborative virtual surgery. Computer Methods and Programs in Biomedicine, 96(3), 205–216.
  • Qin, J., Pang, W. M., Chui, Y. P., Wong, T. T., & Heng, P. A. (2010). A novel modeling framework for multilayered soft tissue deformation in virtual orthopedic surgery. Journal of Medical Systems, 34(3), 261–271.
  • Sales, B. R. A., Machado, L. S., & Moraes, R. M. (2011). Interactive collaboration for virtual reality systems related to medical education and training. Technology and Medical Sciences, 157–162.
  • Santamaria, A. F., Serianni, A., Raimondo, P., De Rango, F., & Froio, M. (2016, July). Smart wearable device for health monitoring in the internet of things (IoT) domain. In Proceedings of the summer computer simulation conference (p. 36). Society for Computer Simulation International.
  • Seymour, N. E., Gallagher, A. G., Roman, S. A., O’Brien, M. K., Bansal, V. K., Andersen, D. K., & Satava, R. M. (2002). Virtual reality training improves operating room performance: Results of a randomized, double-blinded study. Annals of Surgery, 236(4), 458.
  • Shi, Y., Xiong, Y., Hua, X., Tan, K., & Pan, X. (2015, October). Key techniques of haptic related computation in virtual liver surgery. In 2015 8th international conference on biomedical engineering and informatics (BMEI) (pp. 355–359). IEEE.
  • Sørensen, T. S., Therkildsen, S. V., Makowski, P., Knudsen, J. L., & Pedersen, E. M. (2001). A new virtual reality approach for planning of cardiac interventions. Artificial Intelligence in Medicine, 22(3), 193–214.
  • Tolsdorff, B., Pommert, A., Höhne, K. H., Petersik, A., Pflesser, B., Tiede, U., & Leuwer, R. (2010). Virtual reality: A new paranasal sinus surgery simulator. The Laryngoscope, 120(2), 420–426.
  • Tsai, M. D., Hsieh, M. S., & Tsai, C. H. (2007). Bone drilling haptic interaction for orthopedic surgical simulator. Computers in Biology and Medicine, 37(12), 1709–1718.
  • Tsai, M. D., Liu, C. S., Liu, H. Y., Hsieh, M. S., & Tsai, F. C. (2011, May). Virtual reality facial contouring surgery simulator based on CT transversal slices. In Bioinformatics and biomedical engineering, (iCBBE) 2011 5th international conference on (pp. 1–4). IEEE.
  • Vankipuram, M., Kahol, K., McLaren, A., & Panchanathan, S. (2010). A virtual reality simulator for orthopedic basic skills: A design and validation study. Journal of Biomedical Informatics, 43(5), 661–668.
  • Xu, B., Da Xu, L., Cai, H., Xie, C., Hu, J., & Bu, F. (2014). Ubiquitous data accessing method in IoT-based information system for emergency medical services. IEEE Transactions on Industrial Informatics, 10(2), 1578–1586.
  • Youngblood, P., Harter, P. M., Srivastava, S., Moffett, S., Heinrichs, W. L., & Dev, P. (2008). Design, development, and evaluation of an online virtual emergency department for training trauma teams. Simulation in Healthcare: The Journal of the Society for Simulation in Healthcare, 3(3), 146–153.
  • Yu, L., Wang, T., Wang, W., Wang, Z., & Zhang, B. (2013, March). A geometric modeling method based on OpenGL in virtual gallbladder surgery. In Proceedings of the 2nd international conference on computer science and electronics engineering. Atlantis Press.